Fluid Mechanics: Fundamentals and Applications
4th Edition
ISBN: 9781259696534
Author: Yunus A. Cengel Dr., John M. Cimbala
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13, Problem 95CP
To determine
The discharge coefficient for sluice gates.
The values of the discharge coefficient for the sluice gate with free out flow.
The value of the discharge coefficient for the idealized frictionless flow.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A vertical channel of diameter 5 cm and length 10 m is conducting water in upward manner( water viscosity= 1x10 -6 m2/s , water density =1000 kg/m3 ). For the presence of laminar flow regime determine the maximum amount of flow rate approximately ( Use pi number as 3,14 )ANSWER: 0,09 kg/s
A smooth 8-cm-diameter pipe, 200 m long, connects tworeservoirs, containing water at 20°C, one of which has asurface elevation of 700 m and the other a surface elevationof 560 m. If minor losses are neglected, the expected fl owrate through the pipe is(a) 0.048 m3/h, (b) 2.87 m3/h, (c) 134 m3/h, (d) 172 m3/h,(e) 385 m3/h
Can someone explain the step by step process of this solution like how it happened, including terms (ex. V, A, Q)
Chapter 13 Solutions
Fluid Mechanics: Fundamentals and Applications
Ch. 13 - What is the driving force for flow in an open...Ch. 13 - How does open-channel flow differ from internal...Ch. 13 - Prob. 3CPCh. 13 - Prob. 4CPCh. 13 - What is normal depth? Explain how it is...Ch. 13 - How does uniform flow differ from nonuniform flow...Ch. 13 - Prob. 7CPCh. 13 - Prob. 8CPCh. 13 - Prob. 9CPCh. 13 - Prob. 10CP
Ch. 13 - Prob. 11CPCh. 13 - Water at 20°C flows in a partially full...Ch. 13 - Prob. 13PCh. 13 - Prob. 14PCh. 13 - Prob. 15PCh. 13 - Prob. 16PCh. 13 - Water at 10°C flows in a 3-rn-diameter circular...Ch. 13 - Prob. 18PCh. 13 - Prob. 19PCh. 13 - Prob. 20CPCh. 13 - Prob. 21CPCh. 13 - Prob. 22CPCh. 13 - Prob. 23CPCh. 13 - Prob. 24CPCh. 13 - Prob. 25CPCh. 13 - Consider steady supercritical flow of water...Ch. 13 - During steady and uniform flow through an open...Ch. 13 - How is the friction slope defined? Under what...Ch. 13 - Prob. 29PCh. 13 - Prob. 30EPCh. 13 - Prob. 31EPCh. 13 - Prob. 32PCh. 13 - Prob. 33PCh. 13 - Prob. 34PCh. 13 - Prob. 35PCh. 13 - Prob. 36PCh. 13 - Prob. 37PCh. 13 - Prob. 38CPCh. 13 - Which is the best hydraulic cross section for an...Ch. 13 - Prob. 40CPCh. 13 - Prob. 41CPCh. 13 - Prob. 42CPCh. 13 - Prob. 43CPCh. 13 - Prob. 44CPCh. 13 - Prob. 45PCh. 13 - A 3-ft-diameter semicircular channel made of...Ch. 13 - A trapezoidal channel with a bottom width of 6 m....Ch. 13 - Prob. 48PCh. 13 - Prob. 49PCh. 13 - Prob. 50PCh. 13 - Water is to be transported n a cast iron...Ch. 13 - Prob. 52PCh. 13 - Prob. 53PCh. 13 - Prob. 54PCh. 13 - Prob. 55PCh. 13 - Prob. 56PCh. 13 - Prob. 58EPCh. 13 - Prob. 59EPCh. 13 - Prob. 60PCh. 13 - Repeat Prob. 13-60 for a weedy excavated earth...Ch. 13 - Prob. 62PCh. 13 - During uniform flow n open channels, the flow...Ch. 13 - Prob. 64PCh. 13 - Is it possible for subcritical flow to undergo a...Ch. 13 - How does nonuniform or varied flow differ from...Ch. 13 - Prob. 67CPCh. 13 - Consider steady flow of water; an upward-sloped...Ch. 13 - How does gradually varied flow (GVF) differ from...Ch. 13 - Why is the hydraulic jump sometimes used to...Ch. 13 - Consider steady flow of water in a horizontal...Ch. 13 - Consider steady flow of water in a downward-sloped...Ch. 13 - Prob. 73CPCh. 13 - Prob. 74CPCh. 13 - Water is flowing in a 90° V-shaped cast iron...Ch. 13 - Prob. 76PCh. 13 - Consider the flow of water through a l2-ft-wde...Ch. 13 - Prob. 78PCh. 13 - Prob. 79PCh. 13 - Prob. 80PCh. 13 - Prob. 81EPCh. 13 - Water flowing in a wide horizontal channel at a...Ch. 13 - Water discharging into a 9-m-wide rectangular...Ch. 13 - During a hydraulic jump in a wide channel, the...Ch. 13 - Prob. 92PCh. 13 - Prob. 93CPCh. 13 - Prob. 94CPCh. 13 - Prob. 95CPCh. 13 - Prob. 96CPCh. 13 - Prob. 97CPCh. 13 - Prob. 98CPCh. 13 - Consider uniform water flow in a wide rectangular...Ch. 13 - Prob. 100PCh. 13 - Prob. 101PCh. 13 - Prob. 102EPCh. 13 - Prob. 103PCh. 13 - Prob. 104PCh. 13 - Prob. 105PCh. 13 - Prob. 106EPCh. 13 - Prob. 107EPCh. 13 - Prob. 108PCh. 13 - Prob. 109PCh. 13 - Prob. 111PCh. 13 - Repeat Prob. 13-111 for an upstream flow depth of...Ch. 13 - Prob. 113PCh. 13 - Prob. 114PCh. 13 - Repeat Prob. 13-114 for an upstream flow depth of...Ch. 13 - Prob. 116PCh. 13 - Prob. 117PCh. 13 - Prob. 118PCh. 13 - Prob. 119PCh. 13 - Water flows in a canal at an average velocity of 6...Ch. 13 - Prob. 122PCh. 13 - A trapczoda1 channel with brick lining has a...Ch. 13 - Prob. 124PCh. 13 - A rectangular channel with a bottom width of 7 m...Ch. 13 - Prob. 126PCh. 13 - Prob. 128PCh. 13 - Prob. 129PCh. 13 - Consider o identical channels, one rectangular of...Ch. 13 - The flow rate of water in a 6-m-ide rectangular...Ch. 13 - Prob. 132EPCh. 13 - Prob. 133EPCh. 13 - Consider two identical 15-ft-wide rectangular...Ch. 13 - Prob. 138PCh. 13 - Prob. 139PCh. 13 - A sluice gate with free outflow is used to control...Ch. 13 - Prob. 141PCh. 13 - Prob. 142PCh. 13 - Repeat Prob. 13-142 for a velocity of 3.2 ms after...Ch. 13 - Water is discharged from a 5-rn-deep lake into a...Ch. 13 - Prob. 145PCh. 13 - Prob. 146PCh. 13 - Prob. 147PCh. 13 - Prob. 148PCh. 13 - Prob. 149PCh. 13 - Prob. 150PCh. 13 - Prob. 151PCh. 13 - Prob. 152PCh. 13 - Water f1ows in a rectangular open channel of width...Ch. 13 - Prob. 154PCh. 13 - Prob. 155PCh. 13 - Prob. 156PCh. 13 - Prob. 157PCh. 13 - Prob. 158PCh. 13 - Prob. 159PCh. 13 - Prob. 160PCh. 13 - Prob. 161PCh. 13 - Prob. 162PCh. 13 - Prob. 163PCh. 13 - Prob. 164PCh. 13 - Prob. 165PCh. 13 - Consider water flow in the range of 10 to 15 m3/s...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A spillway 45 m long having discharge coefficient 1.8 permits a maximum discharge of 90 m³/s from a storage resevoir. It is proposed to replace the spillway by a siphon spillway of section 0.75 m x 1.5 m with operating head 8 m and discharge coefficient 0.64. Find the number of siphons required and the amount of extra water sored, if the siphons have a primig depth of 0.15 m; the average surface area of the reservoir being 5 x 105 m².arrow_forwardA bar screen is inclined at 75 degree angle and with horizontal. The rectangular bars have dimensions of 10mm width * 50 mm depth and a clear spacing of 25mm. The velocity through the screen is 0.9 m/s and the total number of bars is 47 and that of clear spacing is 48. Determine the : I) velocity of wastewater in the approached channel in m/s ii) width of screen in m iii) head loss in m when the bars are clean Iv) head loss in m when the bars are 40% clogged 9:47 PMarrow_forwardWater at 10°C flows from a large reservoir to a smaller one through a 4-cm diameter galvanized iron piping system, as shown in the Figure. Determine the elevation zı for a flow rate of 6 L/s. 21 = ? Sharp-edged entrance, Standard elbow, flanged, D= 4cm Standard elbow, threaded, 22 = 5m 8m -Control volume Globe valve, fully open boundary -90 m Sharp-edged exit,arrow_forward
- Read the question carefully and give me right solution with clear calculations. The hydraulic radius (m) for a circular pipe of diameter (D) behaving as open channel is given by - - - - - - -?arrow_forwardProve the followingy equetion for the discharge in a a tri- H.W.: angular highway guter having one side verticel f the other side slope (z(H):I (v) 12 813 Q- 0. 316 F(z) (9) (s) where; S13 FCZ) = 2/3 Also, com pute the discharge if za12, n=0.015, y= o. lm 4s= o.03arrow_forwardA rectangular suppressed weir, 1 m in length is used in a reservoir with an area of 50 square yards. During dry season, it was requested for 40 cubic meters per second of water to be discharged using the weir. If the discharge coefficient is 0.72 and the initial head of the weir was 1.20 m, how long will it take for the weir to discharge the demand as stated in the problem? O 66.25 s O 43.85 s 36.15 s O 28.64 sarrow_forward
- H-W 1 Q1/ Neglecting losses, determine the discharge in Fig. below Oil sp gr 0.75 3 t 4 in, diam Waterarrow_forwardClassmentuon of Sreperes. Pumn nower ant Problem: Determine the head of water H. Flow rate Q=5 Vs, =20 m, d=35 mm, steel pipes, =25°C. Take into account only the losses along the length. posifre d EIN Basic COcents TH 1. darrow_forwardProblem Determine the pump head required to pump water between the two tanks shown in the following figure. Water flowrate is 5.6x10³ m³/s. Consider all major and minor head losses. ₁-6 m Fully Open globe valve Pump Threaded regular 90° elbow bend K-0.25 122 m of pipe, D-5 cm. (e/D) 0.001 - Half-open gate valve 3₂-36.5 marrow_forward
- Q1) What head H is needed in Fig. 3 to produce a discharge of 0.3 m/s? use minor loss coefficient of 0.5 for the entrance and 0.12 for diffusers. Figure 1. Lite beer 5.9.-1.00 0.05 pojse 30 m 210-mm diam Square edge Smooth pipe Fig. 1 60 m 305 mm diam B 450 mm diam 1634arrow_forwardA circular, unfinished concrete drainpipe is laid on a slopeof 0.0025 and is planned to carry from 50 to 300 ft3/s ofrunoff water. Design constraints are that (1) the waterdepth should be no more than three-fourths of the diameterand (2) the flow should always be subcritical. What isthe appropriate pipe diameter to satisfy these requirements?If no commercial pipe is exactly this calculated size, should you buy the next smallest or the next largestpipe?arrow_forwardA clay tile V-shaped channel, with an included angle of90°, is 1 km long and is laid out on a 1:400 slope. Whenrunning at a depth of 2 m, the upstream end is suddenlyclosed while the lower end continues to drain. Assumingquasi-steady normal discharge, fi nd the time for the channeldepth to drop to 20 cm.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
8.01x - Lect 27 - Fluid Mechanics, Hydrostatics, Pascal's Principle, Atmosph. Pressure; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=O_HQklhIlwQ;License: Standard YouTube License, CC-BY
Dynamics of Fluid Flow - Introduction; Author: Tutorials Point (India) Ltd.;https://www.youtube.com/watch?v=djx9jlkYAt4;License: Standard Youtube License