Fluid Mechanics: Fundamentals and Applications
4th Edition
ISBN: 9781259696534
Author: Yunus A. Cengel Dr., John M. Cimbala
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
Chapter 13, Problem 163P
To determine
The wasted power potential due to hydraulic jump.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Water is to be transported in a finished-concrete rectangular channel with a bottom width of 1.2 m at a rate of 5 m3 /s. The channel bottom drops 1 m per 500 m length. The minimum height of the channel under uniform-flowconditions is(a) 1.9 m (b) 1.5 m (c) 1.2 m (d) 0.92 m (e) 0.60 m
Water discharges into a rectangular horizontal channel from a sluice gate and undergoes a hydraulic jump. The flow depth and velocity before the jump are 1.25 m and 8.5 m/s, respectively. The percentage available head loss due to the hydraulic jump is (a) 4.7% (b) 7.2% (c) 8.8% (d ) 13.5% (e) 16.3%
Water flows in a rectangular open channel of width 5 m at a rate of 7.5 m3/s. The critical depth for this flow is (a) 5 m (b) 2.5 m (c) 1.5 m (d) 0.96 m (e) 0.61 m
Chapter 13 Solutions
Fluid Mechanics: Fundamentals and Applications
Ch. 13 - What is the driving force for flow in an open...Ch. 13 - How does open-channel flow differ from internal...Ch. 13 - Prob. 3CPCh. 13 - Prob. 4CPCh. 13 - What is normal depth? Explain how it is...Ch. 13 - How does uniform flow differ from nonuniform flow...Ch. 13 - Prob. 7CPCh. 13 - Prob. 8CPCh. 13 - Prob. 9CPCh. 13 - Prob. 10CP
Ch. 13 - Prob. 11CPCh. 13 - Water at 20°C flows in a partially full...Ch. 13 - Prob. 13PCh. 13 - Prob. 14PCh. 13 - Prob. 15PCh. 13 - Prob. 16PCh. 13 - Water at 10°C flows in a 3-rn-diameter circular...Ch. 13 - Prob. 18PCh. 13 - Prob. 19PCh. 13 - Prob. 20CPCh. 13 - Prob. 21CPCh. 13 - Prob. 22CPCh. 13 - Prob. 23CPCh. 13 - Prob. 24CPCh. 13 - Prob. 25CPCh. 13 - Consider steady supercritical flow of water...Ch. 13 - During steady and uniform flow through an open...Ch. 13 - How is the friction slope defined? Under what...Ch. 13 - Prob. 29PCh. 13 - Prob. 30EPCh. 13 - Prob. 31EPCh. 13 - Prob. 32PCh. 13 - Prob. 33PCh. 13 - Prob. 34PCh. 13 - Prob. 35PCh. 13 - Prob. 36PCh. 13 - Prob. 37PCh. 13 - Prob. 38CPCh. 13 - Which is the best hydraulic cross section for an...Ch. 13 - Prob. 40CPCh. 13 - Prob. 41CPCh. 13 - Prob. 42CPCh. 13 - Prob. 43CPCh. 13 - Prob. 44CPCh. 13 - Prob. 45PCh. 13 - A 3-ft-diameter semicircular channel made of...Ch. 13 - A trapezoidal channel with a bottom width of 6 m....Ch. 13 - Prob. 48PCh. 13 - Prob. 49PCh. 13 - Prob. 50PCh. 13 - Water is to be transported n a cast iron...Ch. 13 - Prob. 52PCh. 13 - Prob. 53PCh. 13 - Prob. 54PCh. 13 - Prob. 55PCh. 13 - Prob. 56PCh. 13 - Prob. 58EPCh. 13 - Prob. 59EPCh. 13 - Prob. 60PCh. 13 - Repeat Prob. 13-60 for a weedy excavated earth...Ch. 13 - Prob. 62PCh. 13 - During uniform flow n open channels, the flow...Ch. 13 - Prob. 64PCh. 13 - Is it possible for subcritical flow to undergo a...Ch. 13 - How does nonuniform or varied flow differ from...Ch. 13 - Prob. 67CPCh. 13 - Consider steady flow of water; an upward-sloped...Ch. 13 - How does gradually varied flow (GVF) differ from...Ch. 13 - Why is the hydraulic jump sometimes used to...Ch. 13 - Consider steady flow of water in a horizontal...Ch. 13 - Consider steady flow of water in a downward-sloped...Ch. 13 - Prob. 73CPCh. 13 - Prob. 74CPCh. 13 - Water is flowing in a 90° V-shaped cast iron...Ch. 13 - Prob. 76PCh. 13 - Consider the flow of water through a l2-ft-wde...Ch. 13 - Prob. 78PCh. 13 - Prob. 79PCh. 13 - Prob. 80PCh. 13 - Prob. 81EPCh. 13 - Water flowing in a wide horizontal channel at a...Ch. 13 - Water discharging into a 9-m-wide rectangular...Ch. 13 - During a hydraulic jump in a wide channel, the...Ch. 13 - Prob. 92PCh. 13 - Prob. 93CPCh. 13 - Prob. 94CPCh. 13 - Prob. 95CPCh. 13 - Prob. 96CPCh. 13 - Prob. 97CPCh. 13 - Prob. 98CPCh. 13 - Consider uniform water flow in a wide rectangular...Ch. 13 - Prob. 100PCh. 13 - Prob. 101PCh. 13 - Prob. 102EPCh. 13 - Prob. 103PCh. 13 - Prob. 104PCh. 13 - Prob. 105PCh. 13 - Prob. 106EPCh. 13 - Prob. 107EPCh. 13 - Prob. 108PCh. 13 - Prob. 109PCh. 13 - Prob. 111PCh. 13 - Repeat Prob. 13-111 for an upstream flow depth of...Ch. 13 - Prob. 113PCh. 13 - Prob. 114PCh. 13 - Repeat Prob. 13-114 for an upstream flow depth of...Ch. 13 - Prob. 116PCh. 13 - Prob. 117PCh. 13 - Prob. 118PCh. 13 - Prob. 119PCh. 13 - Water flows in a canal at an average velocity of 6...Ch. 13 - Prob. 122PCh. 13 - A trapczoda1 channel with brick lining has a...Ch. 13 - Prob. 124PCh. 13 - A rectangular channel with a bottom width of 7 m...Ch. 13 - Prob. 126PCh. 13 - Prob. 128PCh. 13 - Prob. 129PCh. 13 - Consider o identical channels, one rectangular of...Ch. 13 - The flow rate of water in a 6-m-ide rectangular...Ch. 13 - Prob. 132EPCh. 13 - Prob. 133EPCh. 13 - Consider two identical 15-ft-wide rectangular...Ch. 13 - Prob. 138PCh. 13 - Prob. 139PCh. 13 - A sluice gate with free outflow is used to control...Ch. 13 - Prob. 141PCh. 13 - Prob. 142PCh. 13 - Repeat Prob. 13-142 for a velocity of 3.2 ms after...Ch. 13 - Water is discharged from a 5-rn-deep lake into a...Ch. 13 - Prob. 145PCh. 13 - Prob. 146PCh. 13 - Prob. 147PCh. 13 - Prob. 148PCh. 13 - Prob. 149PCh. 13 - Prob. 150PCh. 13 - Prob. 151PCh. 13 - Prob. 152PCh. 13 - Water f1ows in a rectangular open channel of width...Ch. 13 - Prob. 154PCh. 13 - Prob. 155PCh. 13 - Prob. 156PCh. 13 - Prob. 157PCh. 13 - Prob. 158PCh. 13 - Prob. 159PCh. 13 - Prob. 160PCh. 13 - Prob. 161PCh. 13 - Prob. 162PCh. 13 - Prob. 163PCh. 13 - Prob. 164PCh. 13 - Prob. 165PCh. 13 - Consider water flow in the range of 10 to 15 m3/s...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Water discharges into a rectangular horizontal channel from a sluice gate and undergoes a hydraulic jump. The channel is 25-m-wide and the flow depth and velocity before the jump are 2 m and 9 m/s, respectively. The flow depth after the jump is (a) 1.26 m (b) 2 m (c) 3.61 m (d ) 4.83 m (e) 6.55 marrow_forwardConsider water flow in a rectangular open channel of height 2 m and width 5 m containing water of depth 1 m. The hydraulic radius for this flow is(a) 0.71 m (b) 0.82 m (c) 0.94 m (d) 1.1 m (e) 1.3 marrow_forwardWater flows in a rectangular open channel of width 0.6 m at a rate of 0.25 m3/s. If the flow depth is 0.2 m, what is the alternate flow depth if the character of flow were to change? (a) 0.2 m (b) 0.26 m (c) 0.35 m (d) 0.6 m (e) 0.8 marrow_forward
- Consider the uniform flow of water in the triangular channel shown in the figure. The channel bed slope is 0.003 and the roughness coefficient is 0.025. The flow rate in the channel is 25 m³/s. What is the normal depth? a.3.48 m b.2.28 m c.4.70 m d. 1.98 m What is the critical depth? a. 1.98 m b.4.70 m c.3.48 m d.2.28 m If the flow depth at a certain section of the channel is 2 m, the flow is: a.subcritical b.critical c.supercritical d.can not be determined VAI 2 1arrow_forwardAn irrigation channel is to carry a discharge of 14 cumec with a velocity of 0.9 m/s and bed slope of 1 in 2500. The side slopes are 1 to 1. Find the depth and bottom width. The values of Chezy" C for this channel for different values of hydraulic radius R are as tabulated below. Hydraulic radius R 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 Chezy's C 34 35 37 38 39 40 41 41arrow_forwardAn overflow masonry dam is to be constructed across a stream. The stream is estimated to have a maximum flood discharge of 850 m3/s when the elevation of the water surface at the dam site is 345m. Six sluice gates each 2.4m x 1.8m wide (C= 0.75) are to be constructed in the dam with their sill at elevation 342m. The main overflow weir for which C = 1.45 will be 60 m long with a crest elevation of 360m. An Auxiliary weir 180m long with a crest elevation of 361m will operate during the floods. For this weir, C = 1.85. With all sluice gates open and when the discharge is 850m3/s, neglecting velocity of approach, a. Determine the discharge of the auxiliary weir. b. Determine the discharge of the main weir. c. Determine the discharge of the sluice gates.arrow_forward
- A trapezoidal channel transports water to supply a township. The longitudinal bed slope is 0.0077. The cross-sectional shape of the canal is trapezoidal, with a 5.1 m wide bottom and 1V:2.5H sideslopes. The channel is lined with smooth concrete. The water discharge is 110 m/s. The critical flow depth is: a. 2.468 m b. 2.468 m C. Don't know d. 2.351 m e. 2.209 m f. 1.704 marrow_forwardThe best hydraulic cross section for a rectangular open channel is one whose fluid height is (a) half, (b) twice, (c) equal to, or (d) one-third the channel width.arrow_forwardWater is released from a 0.8-m-deep reservoir into a 4-m-wide open channel through a sluice gate with a 0.1-m-high opening at the channel bottom. The flow depth after all turbulence subsides is 0.5 m. The rate of discharge is(a) 0.92 m3/s (b) 0.79 m3/s (c) 0.66 m3/s(d) 0.47 m3/s (e) 0.34 m3/sarrow_forward
- Consider a rectangular channel 3 m wide laid on a 1°slope. If the water depth is 2 m, the hydraulic radius is(a) 0.43 m, (b) 0.6 m, (c) 0.86 m, (d ) 1.0 m, (e) 1.2 marrow_forwardIf the flow depth remains constant in an open-channel flow, the flow is called(a) Uniform flow (b) Steady flow (c) Varied flow (d) Unsteady flow (e) Laminar flowarrow_forwardDo 3,4arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License