Essential University Physics
4th Edition
ISBN: 9780134988559
Author: Wolfson, Richard
Publisher: Pearson Education,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13, Problem 66P
A harmonic oscillator is underdamped if the damping constant b is less than
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Considering an undamped, forced oscillator (b = 0), show that equation (1) is a solution of equation (2).
(1)
x = A cos(wt + ¢)
d²x
EF = ma → Fo sin wt – bOK – kx = m9
dt?
xp
dt
Use an amplitude given by the following equation. (Submit a file with a maximum size of 1 MB.)
Fo
A
V (w? - w,3)?
+ m
A 6-kg mass is attached to a spring whose stiffness constant is 150 N/m.
The damping is negligible. The mass is displaced through a distance of
2m to the left of the equilibrium position and given a velocity of - m/s
to the right. The amplitude, natural frequency of the motion and the
time when the mass return to its equilibrium position for the first time
are given by
Select one:
V401
cycles/sec and 0.93s
10
V401
cycles/sec and 0.3s.
10
V401
cycles/sec and 0.3s
10
(401
cycles/sec and 0.93s
10
Consider a simple pendulum of length L with a mass m.
Derive the angular frequency of oscillation for the pendulum when it is displaced by a small angle. Assume it is in a gravitational field with the magnitude of acceleration due to gravity equal to g. (That is, you need to find MOI and d for a simple pendulum and then use the equation for ω for a simple pendulum.)
Chapter 13 Solutions
Essential University Physics
Ch. 13.1 - A typical human heart rate is about 65 beats per...Ch. 13.2 - Two identical mass-spring systems are displaced...Ch. 13.3 - What happens to the period of a pendulum if (l)...Ch. 13.4 - Figure 13.18 shows the paths traced in the...Ch. 13.5 - Two different mass-spring systems are oscillating...Ch. 13.6 - The figure shows displacement-versus-time graphs...Ch. 13.7 - The photo shows a wineglass shattering in response...Ch. 13 - The vibration frequencies of molecules are much...Ch. 13 - What happens to the frequency of a simple harmonic...Ch. 13 - How does the frequency of a simple harmonic...
Ch. 13 - How would the frequency of a horizontal massspring...Ch. 13 - When in its cycle is the acceleration of an...Ch. 13 - One pendulum consists of a solid rod of mass m and...Ch. 13 - Why is critical damping desirable in a cars...Ch. 13 - Explain why the frequency of a damped system is...Ch. 13 - Opera singers have been known to break glasses...Ch. 13 - What will happen to the period of a massspring...Ch. 13 - Prob. 11ECh. 13 - A violin string playing the note A oscillates at...Ch. 13 - The vibration frequency of a hydrogen chloride...Ch. 13 - The top of a skyscraper sways back and forth,...Ch. 13 - A hummingbirds wings vibrate at about 45 Hz. Whats...Ch. 13 - A 200-g mass is attached to a spring of constant k...Ch. 13 - An automobile suspension has an effective spring...Ch. 13 - A 342-g mass is attached to a spring and undergoes...Ch. 13 - A particle undergoes simple harmonic motion with...Ch. 13 - How long should you make a simple pendulum so its...Ch. 13 - At the heart of a grandfather clock is a simple...Ch. 13 - A 622-g basketball with 24.0-cm diameter is...Ch. 13 - A meter stick is suspended from one end and set...Ch. 13 - A wheel rotates at 600 rpm. Viewed from the edge,...Ch. 13 - The x- and y-components of an objects motion are...Ch. 13 - A 450-g mass on a spring is oscillating at 1.2 Hz....Ch. 13 - A torsional oscillator of rotational inertia 1.6...Ch. 13 - Prob. 28ECh. 13 - The vibration of a piano string can be described...Ch. 13 - A massspring system has b/m = 0/5, where b is the...Ch. 13 - A cars front suspension has a natural frequency of...Ch. 13 - Prob. 32ECh. 13 - Prob. 33ECh. 13 - Prob. 34ECh. 13 - Example 13.2: Repeal the preceding problem, now...Ch. 13 - Example 13.5: A mass–spring system is oscillating...Ch. 13 - Prob. 37ECh. 13 - Example 13.5: A sample pendulum is swinging with...Ch. 13 - Example 13.5: A simple pendulum of muss m is...Ch. 13 - A simple model for carbon dioxide consists of...Ch. 13 - Prob. 41PCh. 13 - The human eye and muscles that hold it can be...Ch. 13 - A mass m slides along a frictionless horizontal...Ch. 13 - Prob. 44PCh. 13 - A physics student, bored by a lecture on simple...Ch. 13 - A pendulum of length L is mounted in a rocket....Ch. 13 - The protein dynein powers the flagella that propel...Ch. 13 - A mass is attached to a vertical spring, which...Ch. 13 - Derive the period of a simple pendulum by...Ch. 13 - A solid disk of radius R is suspended from a...Ch. 13 - A thin steel beam is suspended from a crane and is...Ch. 13 - A cyclist turns her bicycle upside down to repair...Ch. 13 - An object undergoes simple harmonic motion in two...Ch. 13 - The muscles that drive insect wings minimize the...Ch. 13 - Prob. 55PCh. 13 - If Jane and Tarzan are initially 8.0 m apart in...Ch. 13 - A small mass measuring device (SMMD) used for...Ch. 13 - A thin, uniform hoop of mass M and radius R is...Ch. 13 - A mass m is mounted between two springs with...Ch. 13 - Prob. 60PCh. 13 - Show that the potential energy of a simple...Ch. 13 - The total energy of a massspring system is the sum...Ch. 13 - A solid cylinder of mass M and radius R is mounted...Ch. 13 - A mass m is free to slide on a frictionless track...Ch. 13 - A 250-g mass is mounted on a spring of constant k...Ch. 13 - A harmonic oscillator is underdamped if the...Ch. 13 - A massless spring with k = 74 N/m hangs from the...Ch. 13 - A meter stick is suspended from a frictionless rod...Ch. 13 - A particle of mass m has potential energy given by...Ch. 13 - Two balls with the same unknown mass m are mounted...Ch. 13 - Two mass-spring systems with the same mass are...Ch. 13 - Two mass-spring systems have the same mass and the...Ch. 13 - Prob. 73PCh. 13 - A 500-g block on a frictionless, horizontal...Ch. 13 - Repeat Problem 64 for a small solid ball of mass M...Ch. 13 - A disk of radius R is suspended from a pivot...Ch. 13 - Youre a structural engineer working on a design...Ch. 13 - Show that x(t) = a cos t bsin t represents simple...Ch. 13 - Youre working for the summer with an ornithologist...Ch. 13 - While waiting for your plane to take off, you...Ch. 13 - Youre working for a playground equipment company,...Ch. 13 - The pendulum in an antique clock consists of a...Ch. 13 - This problem explores the nonlinear pendulum...Ch. 13 - Physicians and physiologists are interested in the...Ch. 13 - Physicians and physiologists are interested in the...Ch. 13 - Physicians and physiologists are interested in the...Ch. 13 - Physicians and physiologists are interested in the...
Additional Science Textbook Solutions
Find more solutions based on key concepts
45. Consider the reaction:
A reaction mixture in a 3.67 L flask at a certain temperature initially con...
Chemistry: Structure and Properties (2nd Edition)
FOCUS ON INFORMATION In Bateslan mimicry, a palatable species gains protection by mimicking an unpalatable one....
Campbell Biology in Focus (2nd Edition)
APPLY 1.2 Express the following quantities in scientific notation
using fundamental SI units of mass and lengt...
Chemistry (7th Edition)
Look at the relative positions of each pair of atoms listed here in the periodic table. How many core electrons...
Organic Chemistry (8th Edition)
52. Two point charges 2.0 cm apart have an electric potential energy –180 ? J. The total charge is 30 nC. What ...
College Physics: A Strategic Approach (3rd Edition)
1.1 Write a one-sentence definition for each of the following:
a. chemistry
b. chemical
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Ql: (Section A) Considering single degree undamped vibration system and Newton's equation as follow: më +kx=0; find the solution of the displacement equation [(t)=Cietwnt+C2e¬i®n'] for the case with: Wn = 2 rad/s, x (0) = 1 mm, and x(0) = V5 mm/s. (Section B) Given the matrix equation of motion of a two degree-of-freedom system 2k -k ||x, = 0 -k 4k ||x2 Зт as: m ||*. Determine (a) the natural frequencies, (b) the modes shapes.arrow_forwardA mass of 0.5 kg stretches a spring by 20 cm. Neglect damping constant, an external vibrations create a force of F(t)= 8cos3t N. Note: Round all answers to 1 decimal place. 1. Find the steady-state solution. u(t)= 2. Find the amplitude. A 3. Find the phase shift. &=tearrow_forwardPlease answer step by step with explanation.arrow_forward
- A mass of 3kg stretches a spring 40cm. Suppose the mass is displaced an additional 12em in the positive (downward) direction and then ruleased. Suppose that the damping constant is 2N/m and assume g9.8 m/s is the gravitational accelaration. Set up a differential equation that describes this system. Let a to denote the displacement, in metern, of the mass from its equilbrium position, and give your answer in terms of z, , a". 3"+ 2 + 245r=0 b) Enter the intial conditions (0) 12 m. (0) o m/s is this wyotem under damped, over damped, or critically damped? under dampedarrow_forwardAn object is attached to a coiled spring. It is pulled down a distance of 20 cm from its equilibrium position and released. The time for one complete oscillation is 4 seconds. Find the function, D(t), to model the position at time t, and then determine the position at 1.2 seconds. The answer choices below have been rounded to the nearest hundredth of a centimeter.arrow_forwardAnswer for D, E, and, Farrow_forward
- A simple pendulum with a length of 1.63 m and a mass of 6.89 kg is given an initial speed of 2.66 m/s at its equilibrium position. (a) Assuming it undergoes simple harmonic motion, determine its period. 2.56 (b) Determine its total energy. 24.37 (c) Determine its maximum angular displacement. (For large v, and/or small I, the small angle approximation may not be good enough here.) Your response differs from the correct answer by more than 10%. Double check your calculations.°arrow_forwardAn undamped harmonic oscillator of mass m and spring constant k oscillates with an amplitude A. In terms of A, at what postion x is the speed of the oscillator, v, is half of its maximum speed v, max Hint: Set-up the energy equation at any postion. What is the maximum energy of the oscillator?arrow_forwardConsider the simple pendulum: a ball hanging at the end of a string. Derive the expression for the period of this physical pendulum, taking into account the finite size ball (i.e. the ball is not a point mass). Assume that the string is massless. Start with the expression for the period T'of a physical pendulum with small amplitude oscillati T = 2π The moment of inertia of the ball about an axis through the center of the ball is Here, I, is the moment of inertia about an axis through the pivot (fixed point at the top of the string, m is the mass of the ball, g is the Earth's gravitational constant of acceleration, and h is the distance from the pivot at the top of the string to the center of mass of the ball. Note, this pre-lab asks you to do some algebra, and may be a bit tricky. I mgh Iball = / mr² Tarrow_forward
- The shock absorbers for a new Proton X-50 car with mass 1000 kg unfortunately has some defects. The car sinks 3.0 cm when a person with 850 N weight climbs into the car at its center of gravity. Then, when the car hits a bump on the road while it is moving, the car starts oscillating up and down in simple harmonic motion. i. Calculate the period and the frequency of the oscillation. 11. 111. Now, if the absorbers were to be replaced, calculate the damping constant, b for the absorbers so that the car will be critical damped. Continue from Part ii above, if another passenger with the same weight of 850 N board the car, determine if the absorbers are still critically damped? If not, is it underdamped or overdamped? Explain.arrow_forward(Include a plot of y(t) to confirm answer)arrow_forwardAn object is attached to a coiled spring. The object is pulled down (negative direction from the rest position) 9 centimeters, and then released. Write an equation for the distance d of the object from its rest position, after t seconds if the amplitude is 9 centimeters and the period is 6 seconds. The equation for the distance d of the object from its rest position is (Type an exact answer, using z as needed. Use integers or fractions for any numbers in the equation.) (? Enter your answer in the answer box. Save for Later 3:18 PM O Type here to search O 11/15/2020 PgUp PgDn F12 DII PrtScn Home F9 End F10 F11 Ins F4 F5 F6 F7 F8 F1 F2 F3 2$ & ) %23 %3D 3. 4. 5 6 7 8 E R Y U | [ Tarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY