Fundamentals of Physics Extended 10E WileyPlus 5 Student Package
1st Edition
ISBN: 9781118441497
Author: Halliday
Publisher: John Wiley & Sons Inc (US)
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13, Problem 4P
The Sun and Earth each exert a gravitational force on the Moon. What is the ratio FSun/FEarth of these two forces? (The average Sun–Moon distance is equal to the Sun–Earth distance.)
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The Sun and Earth each exert a gravitational force on the Moon. What is the ratio FSun/FEarth of these two forces? (The average Sun–Moon distance is equal to the Sun–Earth distance.)
The Sun and Earth each exert a gravitational force on the Moon.What is the ratio FSun/FEarth of these two forces? (The average Sun–Moon distance is equal to the Sun–Earth distance.)
The drawing (not to scale) shows one alignment of the sun, earth, and moon. The gravitational force F SM that the sun exerts on the
moon is perpendicular to the force FEM that the earth exerts on the moon. The masses are: mass of sun = 1.99 x 1030 kg, mass of
earth = 5.98 x 1024 kg, mass of moon = 7.35 x 1022 kg. The distances shown in the drawing are rsM 1.50 x 1011m and rEM =3.85 x
10 m. Determine the magnitude of the net gravitational force on the moon.
TSM
Moon
FSM
Sun
FEM
EM
Earth
Chapter 13 Solutions
Fundamentals of Physics Extended 10E WileyPlus 5 Student Package
Ch. 13 - In Fig. 13-21, a central particle of mass M is...Ch. 13 - Prob. 2QCh. 13 - In Fig. 13-23, a central particle is surrounded by...Ch. 13 - In Fig. 13-24, two particles, of masses m and 2m,...Ch. 13 - Prob. 5QCh. 13 - In Fig. 13-26, three particles are fixed in place....Ch. 13 - Rank the four systems of equal- mass particles...Ch. 13 - Figure 13-27 gives the gravitational acceleration...Ch. 13 - Figure 13-28 shows three particles initially fixed...Ch. 13 - Figure 13-29 shows six paths by which a rocket...
Ch. 13 - Figure 13-30 shows three uniform spherical planets...Ch. 13 - In Fig. 13-31, a particle of mass m which is not...Ch. 13 - ILW A mass M is split into two parts, m and M m,...Ch. 13 - Moon effect. Some people believe that the Moon...Ch. 13 - Prob. 3PCh. 13 - The Sun and Earth each exert a gravitational force...Ch. 13 - Miniature black holes. Left over from the big-bang...Ch. 13 - GO In Fig. 13-32, a square of edge length 20.0 cm...Ch. 13 - One dimension. In Fig. 13-33, two point particles...Ch. 13 - In Fig. 13-34, three 5.00 kg spheres are located...Ch. 13 - SSM WWW We want to position a space probe along a...Ch. 13 - Prob. 10PCh. 13 - As seen in Fig. 13-36, two spheres of mass m and a...Ch. 13 - GO In Fig. 13-37a, particle A is fixed in place at...Ch. 13 - Figure 13-38 shows a spherical hollow inside a...Ch. 13 - Prob. 14PCh. 13 - GO Three dimensions. Three point particles are...Ch. 13 - GO In Fig. 13-40, a particle of mass m1 = 0.67 kg...Ch. 13 - a What will an object weigh on the Moons surface...Ch. 13 - Mountain pull. A large mountain can slightly...Ch. 13 - SSM At what altitude above Earths surface would...Ch. 13 - Mile-high building. In 1956, Frank Lloyd Wright...Ch. 13 - ILW Certain neutron stars extremely dense stars...Ch. 13 - Prob. 22PCh. 13 - Prob. 23PCh. 13 - Two concentric spherical shells with uniformly...Ch. 13 - A solid sphere has a uniformly distributed mass of...Ch. 13 - Prob. 26PCh. 13 - Figure 13-42 shows, not to scale, a cross section...Ch. 13 - Prob. 28PCh. 13 - Prob. 29PCh. 13 - In Problem 1, what ratio m/M gives the least...Ch. 13 - SSM The mean diameters of Mars and Earth are 6.9 ...Ch. 13 - a What is the gravitational potential energy of...Ch. 13 - Prob. 33PCh. 13 - Prob. 34PCh. 13 - GO Figure 13-44 shows four particles, each of mass...Ch. 13 - Zero, a hypothetical planet, has a mass of 5.0 ...Ch. 13 - GO The three spheres in Fig, 13-45, with masses mA...Ch. 13 - In deep space, sphere A of mass 20 kg is located...Ch. 13 - Prob. 39PCh. 13 - A projectile is shot directly away from Earths...Ch. 13 - SSM Two neutron stars arc separated by a distance...Ch. 13 - GO Figure 13-46a shows a particle A that can he...Ch. 13 - a What linear speed must an Earth satellite have...Ch. 13 - Prob. 44PCh. 13 - The Martian satellite Photos travels in an...Ch. 13 - The first known collision between space debris and...Ch. 13 - Prob. 47PCh. 13 - The mean distance of Mars from the Sun is 1.52...Ch. 13 - Prob. 49PCh. 13 - Prob. 50PCh. 13 - Prob. 51PCh. 13 - The Suns center is at one focus of Earths orbit....Ch. 13 - A 20 kg satellite has a circular orbit with a...Ch. 13 - Prob. 54PCh. 13 - In 1610, Galileo used his telescope to discover...Ch. 13 - In 1993 the spacecraft Galileo sent an image Fig....Ch. 13 - Prob. 57PCh. 13 - Prob. 58PCh. 13 - Three identical stars of mass M form an...Ch. 13 - In Fig. 13-50, two satellites, A and B, both of...Ch. 13 - Prob. 61PCh. 13 - Prob. 62PCh. 13 - SSM WWW An asteroid, whose mass is 2.0 10-4 times...Ch. 13 - A satellite orbits a planet of unknown mass in a...Ch. 13 - A Satellite is in a circular Earth orbit of radius...Ch. 13 - One way to attack a satellite in Earth orbit is to...Ch. 13 - Prob. 67PCh. 13 - GO Two small spaceships, each with mass m = 2000...Ch. 13 - Prob. 69PCh. 13 - Prob. 70PCh. 13 - Several planets Jupiter. Saturn, Uranus are...Ch. 13 - Prob. 72PCh. 13 - Figure 13-53 is a graph of the kinetic energy K of...Ch. 13 - The mysterious visitor that appears in the...Ch. 13 - ILW The masses and coordinates of three spheres...Ch. 13 - SSM A very early, simple satellite consisted of an...Ch. 13 - GO Four uniform spheres, with masses mA = 40 kg,...Ch. 13 - a In Problem 77, remove sphere A and calculate the...Ch. 13 - Prob. 79PCh. 13 - Prob. 80PCh. 13 - Prob. 81PCh. 13 - Prob. 82PCh. 13 - Prob. 83PCh. 13 - Prob. 84PCh. 13 - Prob. 85PCh. 13 - Prob. 86PCh. 13 - Prob. 87PCh. 13 - Prob. 88PCh. 13 - Prob. 89PCh. 13 - A 50 kg satellite circles planet Cruton every 6.0...Ch. 13 - Prob. 91PCh. 13 - A 150.0 kg rocket moving radially outward from...Ch. 13 - Prob. 93PCh. 13 - Two 20 kg spheres are fixed in place on a y axis,...Ch. 13 - Sphere A with mass 80 kg is located at the origin...Ch. 13 - In his 1865 science fiction novel From the Earth...Ch. 13 - Prob. 97PCh. 13 - Prob. 98PCh. 13 - A thin rod with mass M = 5.00 kg is bent in a...Ch. 13 - In Fig. 13-57, identical blocks with identical...Ch. 13 - A spaceship is on a straight-line path between...
Additional Science Textbook Solutions
Find more solutions based on key concepts
An inductor and capacitor are connected in series across an AC generator, and the voltage across the inductor i...
Essential University Physics: Volume 2 (3rd Edition)
Suppose you have a gas containing hydrogen molecules and oxygen molecules, in thermal equilibrium. Which molecu...
An Introduction to Thermal Physics
Imagine that a small hole is opened in the container wall near the bottom of each layer. 1. Predict what will h...
Tutorials in Introductory Physics
The correct statement with regard to the given situation.
Physics (5th Edition)
π23!−π45!+π67!− ..... is equal to 1.
Mathematical Methods in the Physical Sciences
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In the law of universal gravitation, Newton assumed that the force was proportional to the product of the two masses (m1m2) . While all scientific conjectures must be experimentally verified, can you provided arguments as to why this must be? (You may wish to consider simple examples in which any other form would lead to contradictory results.)arrow_forwardLet gM represent the difference in the gravitational fields produced by the Moon at the points on the Earths surface nearest to and farthest from the Moon. Find the fraction gM/g, where g is the Earths gravitational field. (This difference is responsible for the occurrence of the lunar tides on the Earth.)arrow_forwardThe Sun has a mass of approximately 1.99 1030 kg. a. Given that the Earth is on average about 1.50 1011 m from the Sun, what is the magnitude of the Suns gravitational field at this distance? b. Sketch the magnitude of the gravitational field due to the Sun as a function of distance from the Sun. Indicate the Earths position on your graph. Assume the radius of the Sun is 7.00 108 m and begin the graph there. c. Given that the mass of the Earth is 5.97 1024 kg, what is the magnitude of the gravitational force on the Earth due to the Sun?arrow_forward
- What is the orbital radius of an Earth satellite having a period of 1.00 h? (b) What is unreasonable about this result?arrow_forwardOn a planet whose radius is 1.2107m , the acceleration due to gravity is 18m/s2 . What is the mass of the planet?arrow_forwardA planet has two moons with identical mass. Moon 1 is in a circular orbit of radius r. Moon 2 is in a circular orbit of radius 2r. The magnitude of the gravitational force exerted by the planet on Moon 2 is (a) four times as large (b) twice as large (c) the same (d) half as large (e) one-fourth as large as the gravitational force exerted by the planet on Moon 1.arrow_forward
- The drawing (not to scale) shows one alignment of the sun, earth, and moon. The gravitational force FSM that the sun exerts on the moon is perpendicular to the force FEM that the earth exerts on the moon. The masses are: mass of sun = 1.99 × 10³0 kg, mass of earth = 5.98 × 1024 kg, mass of moon = 7.35 × 1022 kg. The distances shown in the drawing are rsM = 1.50 × 10¹1 m and rEM = 3.85 × 108 m. Determine the magnitude of the net gravitational force on the moon. Number i Sun Units ISM FSM FEM Earth Moon TEMarrow_forwardWhat is the magnitude if gravitational force each exerts on the other if the distance between a 40kg person and a 30kg persob is 2m?arrow_forwardWhat is the gravitational acceleration close to the surface of a planet with a mass of 4M- and radius of 4RE, where M- and RE are the mass and radius of Earth, respectively? Answer as a multiple of g, the magnitude of the gravitational acceleration near Earth's surface.arrow_forward
- The drawing (not to scale) shows one alignment of the sun, earth, and moon. The gravitational force F SM that the sun exerts on the moon is perpendicular to the force F EM that the earth exerts on the moon. The masses are: mass of sun = 1.99 × 1030 kg, mass of earth = 5.98 x 1024 kg, mass of moon = 7.35 x 1022 kg. The distances shown in the drawing are rsM = 1.50 x 1011 m and rEM = 3.85 x 10° m. Determine the magnitude of the net gravitational force on the moon. rSM Moon Sun FEM Earth Number i Unitsarrow_forwardHINT M. kg (a) Find the magnitude of the gravitational force (in N) between a planet with mass 6.50 x 1024 and its moon, with mass 2.55 x 10 kg, if the average distance between their centers is d= 2.90 x 108 m. %3D N (b) What is the moon's acceleration (in m/s2) toward the planet? (Enter the magnitude.) m/s? (c) What is the planet's acceleration (in m/s²) toward the moon? (Enter the magnitude.) m/s2arrow_forwardThe drawing (not to scale) shows one alignment of the sun, earth, and moon. The gravitational force F SM that the sun exerts on the moon is perpendicular to the force F EM that the earth exerts on the moon. The masses are: mass of sun = 1.99 x 1030 kg, mass of earth = 5.98 x 1024 kg, mass of moon = 7.35 x 1022 kg. The distances shown in the drawing are rsM = 1.50 × 1011 m and rEM = 3.85 × 10° m. Determine the magnitude of the net gravitational force on the moon.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Gravitational Force (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=pxp1Z91S5uQ;License: Standard YouTube License, CC-BY