Introductory Chemistry: An Active Learning Approach
6th Edition
ISBN: 9781305079250
Author: Mark S. Cracolice, Ed Peters
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13, Problem 44E
Interpretation Introduction
Interpretation:
The molecules that are polar are to be predicted.
Concept introduction:
The Lewis structure shows the connectivity between atoms by identifying the lone pairs of electrons in a compound. Lewis structures are also known as Lewis dot structures. The valence electrons around an atom are shown by dots. Bonds between atoms are shown by lines and the lone pair of electrons is shown by a pair of dots.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Question 18 of 55
Draw the Lewis structure of HCIO, (by following the octet rule on all atoms) and
then choose the appropriate pair of molecular geometries of the two central
atoms. Your answer choice is independent of the orientation of your drawn
structure.
CI-O
:0:
H
A) linear/planar
B) pyramidal/trigonal pyramidal
C) trigonal pyramidal / bent (109.5°)
D) linear/trigonal
E) bent (109.5%) / linear
Click to edit molecule
Subme
Draw the most important Lewis structure for [ IF4 ]+ (assuming it exists) and then answer the following questions. The underlined atom is the central atom. All other atoms are bonded directly to the central atom.
(a) What is the electron-group geometry, according to VSEPR theory?
(b) What is the molecular geometry?
(c) Is this species polar or nonpolar?
Explain Drawing a Lewis Structure for a Simple Molecule ?
Chapter 13 Solutions
Introductory Chemistry: An Active Learning Approach
Ch. 13 - Draw the Lewis diagrams for each of the following...Ch. 13 - Prob. 2ECh. 13 - Prob. 3ECh. 13 - Prob. 4ECh. 13 - Draw the Lewis diagrams for each of the following...Ch. 13 - Prob. 6ECh. 13 - Draw the Lewis diagrams for each of the following...Ch. 13 - Prob. 8ECh. 13 - Prob. 9ECh. 13 - Prob. 10E
Ch. 13 - Prob. 11ECh. 13 - Prob. 12ECh. 13 - Prob. 13ECh. 13 - Prob. 14ECh. 13 - Prob. 15ECh. 13 - Prob. 16ECh. 13 - Prob. 17ECh. 13 - Prob. 18ECh. 13 - Prob. 19ECh. 13 - Prob. 20ECh. 13 - Prob. 21ECh. 13 - Prob. 22ECh. 13 - Prob. 23ECh. 13 - Prob. 24ECh. 13 - Prob. 25ECh. 13 - Prob. 26ECh. 13 - Prob. 27ECh. 13 - Prob. 28ECh. 13 - Prob. 29ECh. 13 - Prob. 30ECh. 13 - Prob. 31ECh. 13 - Prob. 32ECh. 13 - Prob. 33ECh. 13 - Prob. 34ECh. 13 - Prob. 35ECh. 13 - Prob. 36ECh. 13 - Prob. 37ECh. 13 - Prob. 38ECh. 13 - Prob. 39ECh. 13 - Prob. 40ECh. 13 - Prob. 41ECh. 13 - Prob. 42ECh. 13 - Prob. 43ECh. 13 - Prob. 44ECh. 13 - Is the carbon tetrachloride molecule, CCl4, which...Ch. 13 - Prob. 46ECh. 13 - Describe the shapes and compare the polarities of...Ch. 13 - Prob. 48ECh. 13 - Prob. 49ECh. 13 - Prob. 50ECh. 13 - Prob. 51ECh. 13 - Prob. 52ECh. 13 - Prob. 53ECh. 13 - Prob. 54ECh. 13 - Prob. 55ECh. 13 - Prob. 56ECh. 13 - Prob. 57ECh. 13 - Prob. 58ECh. 13 - Prob. 59ECh. 13 - Prob. 60ECh. 13 - Prob. 61ECh. 13 - Prob. 62ECh. 13 - Prob. 63ECh. 13 - Prob. 64ECh. 13 - Prob. 65ECh. 13 - Prob. 66ECh. 13 - Prob. 67ECh. 13 - Classify each of the following statements as true...Ch. 13 - Prob. 69ECh. 13 - Draw Lewis diagrams for these five acids of...Ch. 13 - Prob. 71ECh. 13 - Prob. 72ECh. 13 - Describe the shapes of C2H6 and C2H4. In doing so,...Ch. 13 - Prob. 74ECh. 13 - Prob. 75ECh. 13 - C4H10O is the formula of diethyl ether. The same...Ch. 13 - Prob. 77ECh. 13 - Prob. 78ECh. 13 - Draw Lewis diagrams for water and dihydrogen...Ch. 13 - Prob. 2PECh. 13 - Prob. 3PECh. 13 - Prob. 4PECh. 13 - Prob. 5PECh. 13 - What is the Lewis diagram of butane, C4H10?Ch. 13 - Prob. 7PECh. 13 - Prob. 8PECh. 13 - Prob. 9PECh. 13 - Prob. 10PECh. 13 - In the gas phase, tin (II) chloride is a...Ch. 13 - Prob. 12PECh. 13 - Determine the molecular geometry around each...Ch. 13 - Describe the molecular geometry around each carbon...Ch. 13 - Is the difluoromethane molecule polar or nonpolar?...Ch. 13 - Prob. 1LDRECh. 13 - Prob. 2LDRECh. 13 - Prob. 3LDRECh. 13 - Prob. 4LDRECh. 13 - Prob. 5LDRECh. 13 - Prob. 6LDRECh. 13 - Prob. 7LDRECh. 13 - Prob. 8LDRECh. 13 - Prob. 9LDRECh. 13 - Prob. 10LDRE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- What is the most polar bond in the molecule?arrow_forwardPlease complete the following question fully. Question 3 This question is in regards to a molecule named CH4.arrow_forwardDraw the Lewis structure of carbon tetrafluoride (CF4) and then determine if the molecule is polar or nonpolar. A) Nonpolar + B) Polararrow_forward
- Fill in the information for Formula NH41+ A) Lewis Structure B) Number of electron groups C) Number of Lone Pairs D) Electron Geometry E) Molecular Geometryarrow_forwardAnswer the questions below. Draw the structure for ClF5 (1) Using the electronegativity values, calculate the difference. (1) On the structure, identify the dipole(s). (1) Is the overall molecule polar or nonpolar? Explain. (2) Identify the intermolecular forces. Do you expect this molecule to have a low boiling point or a high boiling point? Explain. (3)arrow_forwardQuestion 5arrow_forward
- Question 13 (a) Show the 3D structure of BrF4*. (b) Give the VSEPR shape.. (c) Give the molecular shape. (d) Is this molecule polar? Explain.arrow_forwardWhich one of the following statements is FALSE?arrow_forwardConsider the following ion: BrO3−. a) Show the full electron configuration for Br. b) Draw the most correct Lewis structure for BrO3− and briefly explain why your Lewis structure is correct. c) If the structure is stabilised by resonance, draw at least one of the possible resonance forms. If it is not stabilised by resonance, briefly explain why. d) What is the electronic geometry of BrO3−? What is its molecular shape? e) Does BrO3− have a dipole moment? Briefly justify your answer. f) On average, would you expect IO3− to have longer or shorter bonds than BrO3−? Briefly explain your answer. g) Which of the following molecules would you expect to have the lowest vapour pressure? Briefly explain your choice. h) What is the molecular formula for Compound C? What is the empirical formula for Compound C? Please andwer f, g and h the image is for g and harrow_forward
- Consider the following ion: BrO3−. a) Show the full electron configuration for Br. b) Draw the most correct Lewis structure for BrO3− and briefly explain why your Lewis structure is correct. c) If the structure is stabilised by resonance, draw at least one of the possible resonance forms. If it is not stabilised by resonance, briefly explain why. d) What is the electronic geometry of BrO3−? What is its molecular shape? e) Does BrO3− have a dipole moment? Briefly justify your answer. f) On average, would you expect IO3− to have longer or shorter bonds than BrO3−? Briefly explain your answer. g) Which of the following molecules would you expect to have the lowest vapour pressure? Briefly explain your choice. (IMAGE WITH POSSIBILITIES) h) What is the molecular formula for Compound C? What is the empirical formula for Compound C?arrow_forwardConsider the following ion: BrO3−. a) Show the full electron configuration for Br. b) Draw the most correct Lewis structure for BrO3− and briefly explain why your Lewis structure is correct. c) If the structure is stabilised by resonance, draw at least one of the possible resonance forms. If it is not stabilised by resonance, briefly explain why. d) What is the electronic geometry of BrO3−? What is its molecular shape? e) Does BrO3− have a dipole moment? Briefly justify your answer. f) On average, would you expect IO3− to have longer or shorter bonds than BrO3−? Briefly explain your answer. g) Which of the following molecules would you expect to have the lowest vapour pressure? Briefly explain your choice. h) What is the molecular formula for Compound C? What is the empirical formula for Compound C? please answer c, d and earrow_forwardStep 1 – Write the Lewis structure from the molecular formula.Step 2 – Assign an electron-group arrangement by counting all electron groups (bonding plus nonbonding) around the central atom (or around each centralatom, if more than one central atom in structure).Step 3 – Predict the ideal bond angle from the electron-group arrangement and the effect of any deviation caused by lone pairs or double bonds.Step 4 – Name the molecular shape by counting bonding groups and nonbonding groups separately.Step 5 – Predict whether the molecule is polar or nonpolarStep 6 – Describe the hybridization around the central atom and identify the total number of σ and π bonds in the structurearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
Introductory Chemistry: An Active Learning Approa...
Chemistry
ISBN:9781305079250
Author:Mark S. Cracolice, Ed Peters
Publisher:Cengage Learning
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Calorimetry Concept, Examples and Thermochemistry | How to Pass Chemistry; Author: Melissa Maribel;https://www.youtube.com/watch?v=nSh29lUGj00;License: Standard YouTube License, CC-BY