Lehninger Principles of Biochemistry
Lehninger Principles of Biochemistry
7th Edition
ISBN: 9781464126116
Author: David L. Nelson, Michael M. Cox
Publisher: W. H. Freeman
Question
Book Icon
Chapter 13, Problem 28P

(a)

Summary Introduction

To determine: The electromotive force (in volts) registered by an electrode immersed in a solution containing 1.0 mM NAD+ and 10mM NADH  at pH 7.0  and 25°C.

Introduction:

The coenzyme being used in the “oxidation-reduction” reactions in the cell associated with the cellular respiration is known as Nicotinamide adenine dinucleotide (NAD+). NAD+ is a “two electron oxidizing agent”, which gets reduced to the NADH. The NADH is a “two-electron reducing agent”, which get oxidized to NAD+.

(b)

Summary Introduction

To determine: The electromotive force (in volts) registered by an electrode immersed in a solution containing 1.0 mM NAD+ and 1.0mM NADH at pH 7.0 and 25°C.

Introduction:

The coenzyme being used in the “oxidation-reduction” reactions in the cell associated with the cellular respiration is known as Nicotinamide adenine dinucleotide (NAD+). NAD+ is a “two electron oxidizing agent”, which gets reduced to the NADH. The NADH is a “two-electron reducing agent”, which get oxidized to NAD+.

(c)

Summary Introduction

To determine: The electromotive force (in volts) registered by an electrode immersed in a solution containing 10 mM NAD+ and 1.0mM NADH at pH 7.0 and 25°C.

Introduction:

The coenzyme being used in the “oxidation-reduction” reactions in the cell associated with the cellular respiration is known as Nicotinamide adenine dinucleotide (NAD+). NAD+ is a “two electron oxidizing agent”, which gets reduced to the NADH. The NADH is a “two-electron reducing agent”, which get oxidized to NAD+.

Blurred answer
Students have asked these similar questions
Biochemistry What is the process of "transamination" in either the muscles or the liver, that involves keto acid or glutamic acid? Please explain how the steps work. Thank you!
Biochemistry Please help. Thank you What is the importance of glutamic acid in the metabolism of nitrogen from amino acids? (we know therole; it’s used to remove the nitrogen from amino acids so that the remaining carbon skeleton can bebroken down by the “usual” pathways, but what is the important, unique role that only glutamicacid/glutamate can do?)
Biochemistry Please help. Thank you When carbamyl phosphate is joined to L-ornathine, where does the energy for the reaction come from?
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Biochemistry
Biochemistry
ISBN:9781319114671
Author:Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.
Publisher:W. H. Freeman
Text book image
Lehninger Principles of Biochemistry
Biochemistry
ISBN:9781464126116
Author:David L. Nelson, Michael M. Cox
Publisher:W. H. Freeman
Text book image
Fundamentals of Biochemistry: Life at the Molecul...
Biochemistry
ISBN:9781118918401
Author:Donald Voet, Judith G. Voet, Charlotte W. Pratt
Publisher:WILEY
Text book image
Biochemistry
Biochemistry
ISBN:9781305961135
Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougal
Publisher:Cengage Learning
Text book image
Biochemistry
Biochemistry
ISBN:9781305577206
Author:Reginald H. Garrett, Charles M. Grisham
Publisher:Cengage Learning
Text book image
Fundamentals of General, Organic, and Biological ...
Biochemistry
ISBN:9780134015187
Author:John E. McMurry, David S. Ballantine, Carl A. Hoeger, Virginia E. Peterson
Publisher:PEARSON