Fish can adjust their buoyancy with an organ called the swim bladder. The swim bladder is a flexible gas-filled sac; the fish can increase or decrease the amount of gas in the swim bladder so that it stays neutrally buoyant—neither sinking nor floating. Suppose the fish is neutrally buoyant at some depth and then goes deeper. What needs to happen to the volume of air in the swim bladder? Will the fish need to add or remove gas from the swim bladder to maintain its neutral buoyancy?
Want to see the full answer?
Check out a sample textbook solutionChapter 13 Solutions
College Physics: A Strategic Approach (4th Edition)
Additional Science Textbook Solutions
College Physics (10th Edition)
Physics (5th Edition)
Lecture- Tutorials for Introductory Astronomy
Essential University Physics: Volume 1 (3rd Edition)
Cosmic Perspective Fundamentals
The Cosmic Perspective Fundamentals (2nd Edition)
- (a) As blood passes through the capillary bed in an organ, the capillaries join to form venules (small veins). If the blood speed increases by a factor of 4.00 and the total cross-sectional area of the venules is 10.0 cm2, what is the total cross-sectional area of the capillaries feeding these venules? (b) How many capillaries are involved if their average diameter is 10.0 m?arrow_forwardRefer to Problem 16 and Figure P14.16. A hydrometer is to be constructed with a cylindrical floating rod. Nine fiduciary marks are to be placed along the rod to indicate densities of 0.98 g/cm3, 1.00 g/cm3, 1.02 g/cm3, 1.01 g/cm3, 1.14 g/cm3. The row of marks is to start 0.200 cm from the top end of the rod and end 1.80 cm from the top end. (a) What is the required length of the rod? (b) What must be its average density? (c) Should the marks be equally spaced? Explain your answer.arrow_forwardA manometer is shown in Figure P15.36. Rank the pressures at the five locations indicated from highest to lowest. Indicate equal pressures, if any. FIGURE P15.36arrow_forward
- A tank with a flat bottom of area A and vertical sides is filled to a depth h with water. The pressure is P0 at the top surface. (a) What is the absolute pressure at the bottom of the tank? (b) Suppose an object of mass M and density less than the density of water is placed into the tank and floats. No water overflows. What is the resulting increase in pressure at the bottom of the tank?arrow_forward(a) Calculate the absolute pressure at an ocean depth of 1 000 m. Assume the density of seawater is 1 030 kg/m3 and the air above exerts a pressure of 101.3 kPa. (b) At this depth, what is the buoyant force on a spherical submarine having a diameter of 5.00 m?arrow_forwardA spherical submersible 2.00 m in radius, armed with multiple cameras, descends under water in a region of the Atlantic Ocean known for shipwrecks and finds its first shipwreck at a depth of 1.75 103 m. Seawater has density 1.03 103 kg/m3, and the air pressure at the oceans surface is 1.013 105 Pa. a. What is the absolute pressure at the depth of the shipwreck? b. What is the buoyant force on the submersible at the depth of the shipwreck?arrow_forward
- An airplane has a mass M, and the two wings have a total area A. During level flight, the pressure on the lower wing surface is P1. Determine the pressure P2 on the upper wing surface.arrow_forwardIf your body has a density of 995 kg/m3, what fraction of you will be submerged when floating gently in: (a) Freshwater? (b) Salt water, which has a density of 1027 kg/m3?arrow_forwardReview. In a water pistol, a piston drives water through a large tube of area A1 into a smaller tube of area A2 as shown in Figure P14.46. The radius of the large tube is 1.00 cm and that of the small tube is 1.00 mm. The smaller tube is 3.00 cm above the larger tube. (a) If the pistol is fired horizontally at a height of 1.50 m, determine the time interval required for the water to travel from the nozzle to the ground. Neglect air resistance and assume atmospheric pressure is 1.00 atm. (b) If the desired range of the stream is 8.00 m, with what speed v2 must the stream leave the nozzle? (c) At what speed v1 must the plunger be moved to achieve the desired range? (d) What is the pressure at the nozzle? (e) Find the pressure needed in the larger tube. (f) Calculate the force that must be exerted on the trigger to achieve the desired range. (The force that must be exerted is due to pressure over and above atmospheric pressure.) Figure P14.46arrow_forward
- You have probably noticed that carrying a person in a pool of water is much easier than carrying a person through air. To understand why, find the buoyant force exerted by air and by water on the person. Assume the average volume of a person is 0.45 m3, and that the person is submerged in air and water respectively.arrow_forwardDuring forced exhalation, such as when blowing up a balloon, the diaphragm and chest muscles create a pressure of 60.0 mm Hg between the lungs and chest wall. What force in newtons does this pressure create on the 600 cm2 surface area of the diaphragm?arrow_forwardIn order to draw air into your lungs, your diaphragm and other muscles contract, increasing the lung volume. This lowers the air pressure of the lungs to below atmospheric pressure, and air flows in. When your diaphragm and other muscles relax, the volume of the lungs decreases, and air is forced out. (a) If the total volume of your lungs at rest is 5.31 L and the initial pressure is 749 mmHg, what is the new pressure if the lung volume is increased to 5.45 L? mmHg(b) If the total volume of your lungs at rest is 5.31 L and the initial pressure is 749 mmHg, at what volume will the pressure be 769 mmHg? Larrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning