Concept explainers
Review Question 13.1 How would you determine the density of an irregularly shaped object?
The way of calculating the density of an irregular object.
Answer to Problem 1RQ
Solution:
Calculate the weight of the object with the help of a weighing machine. Then, divide it by the acceleration due to Earth’s gravity to find the mass of the object. Next, calculate the volume of the irregular object by sinking the object in a container with a fluid of a relatively less density. Now, check the change in the volume of the container before and after sinking the object. That change is the volume of the object. Now, divide the mass and volume of object values to find the density of the object.
Explanation of Solution
Introduction:
Mass is the measure of matter present in a body. It is a measure of inertia. It is constant for any object.
Weight is the force caused by gravitational acceleration on a mass:
Here,
Volume is a measure of the space enclosed by the object.
Density is calculated by dividing mass and volume:
Here
Explanation:
Weighing machines will calculate the force Earth exerts on the body:
Rearrange the above expression:
So, mass can be calculated by dividing weight with the acceleration due to gravity.
Now, to calculate the volume of the object, take a container that has a reading of volume on it. Assume that the initial reading of the fluid inside the container is
So, the change in volume is
This change is equal to the volume of the object.
Write the expression for density:
Substitute
This will be the value of density.
Conclusion:
Mass can be found out with the help of a weighing machine. Since the object is of an irregular shape, there is no direct formula for calculating the volume of the object by geometry. So, the best way is to calculate its volume by calculating the space that the object encloses. Then, divide both values to calculate its density.
Want to see more full solutions like this?
Chapter 13 Solutions
College Physics
Additional Science Textbook Solutions
Cosmic Perspective Fundamentals
College Physics: A Strategic Approach (3rd Edition)
Human Physiology: An Integrated Approach (8th Edition)
Chemistry: The Central Science (14th Edition)
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
Organic Chemistry (8th Edition)
- A small statue is recovered in an archaeological dig. Its weight is measured to be 96 lb, and its volume 0.08 ft3. (a) What is the statue's weight density? (b) What substance is it?arrow_forward(a) The pressure inside an alveolus with a 2.00104 -m radius is 1.40103 Pa, due to its fluid-lined walls. Assuming the alveolus acts like a spherical bubble, what is the surface tension of the fluid? (b) Identify the likely fluid. (You may need to extrapolate between values in Table 11.3.)arrow_forwardA straightforward method of finding the density of an object is to measure its mass and then measure its volume by submerging it in a graduated cylinder. What is the density of a 240-g rock that displaces 89.0 cm3 of water? (Note that the accuracy and practical applications of this technique are more limited than a variety of others that are based on Archimedes' principle.)arrow_forward
- Pressure in the spinal fluid is measured as shown in Figure 11.43. If the pressure in the spinal fluid is 10.0 mm Hg: (a) What is the reading of the water manometer in cm water? (b) What is the reading if the person sits up, placing the top of the fluid 60 cm above the tap? The fluid density is 1.05 g/mL. Figure 11.43 A water manometer used to measure pressure in the spinal fluid. The height of the fluid in the manometer is measured relative to the spinal column, and the manometer is open to the atmosphere. The measured pressure will be considerably greater if the person sits up.arrow_forwardWhat is the pressure inside an alveolus having a radius of 2.50104 m if the surface tension of the fluid-lined wall is the same as for soapy water? You may assume the pressure is the same as that created by a spherical bubble.arrow_forward(a) What is the density of a woman who floats in freshwater with 4.00% of her volume above the surface? This could be measured by placing her in a tank with marks on the side to measure how much water she displaces when floating and when held under water (briefly). (b) What percent of her volume is above the surface when she floats in seawater?arrow_forward
- Gasoline is piped underground from refineries to major users. The flow rate is 3.00102 m3/s (about 500 gal/ min), the viscosity of gasoline is 1.00103 (N/m2) s, and its density is 680 kg/m3. (a) What minimum diameter must the pipe have if the Reynolds number is to be less than 2000? (b) What pressure difference must be maintained along each kilometer of the pipe to maintain this flow rate?arrow_forwardArchimedes' principle can be used to calculate the density of a fluid as well as that of a solid. Suppose a chunk of iron with a mass of 390.0 g in air is found to have an apparent mass of 350.5 g when completely submerged in an unknown liquid. (a) What mass of fluid does the iron displace? (b) What is the volume of iron, using its density as given in Table 11.1 (c) Calculate the fluid's density and identify it.arrow_forwardAn 81.5kg man stands on a horizontal surface. (a) What is the volume of the mans body if his average density is 985 kg/m3? (b) What average pressure from his weight is exerted on the horizontal surface. If the mans two feet have a combined area of 4.50 109 m3?arrow_forward
- In Take-Home Experiment: Inhalation, we measured the average flow rate Q of air traveling through the trachea during each inhalation. Now calculate the average air speed in meters per second through your trachea during each inhalation. The radius of the trachea in adult humans is approximately 10-2 m. From the data above, calculate the Reynolds number for the air flow in the trachea during inhalation. Do you expect the air flow to be laminar or turbulent?arrow_forwardBird bones have air pockets in them to reduce their weight—this also gives them an average density significantly less than that of the bones of other animals. Suppose an ornithologist weighs a bird bone in air and in water and finds its mass is 45.0 g and its apparent mass when submerged is 3.60 g (the bone is watertight). (a) What mass of water is displaced? (b) What is the volume of the bone? (c) What is its average density?arrow_forwardThe human brain and spinal cord are immersed in the cerebrospinal fluid. The fluid is normally continuous between the cranial and spinal cavities and exerts a pressure of 100 to 200 mm of H2O above the prevailing atmospheric pressure. In medical work, pressures are often measured in units of millimeters of H2O because body fluids, including the cerebrospinal fluid, typically have the same density as water. The pressure of the cerebrospinal fluid can be measured by means of a spinal tap as illustrated in Figure P14.8. A hollow tube is inserted into the spinal column, and the height to which the fluid rises is observed. If the fluid rises to a height of 160 mm, we write its gauge pressure as 160 mm H2O. (a) Express this pressure in pascals, in atmospheres, and in millimeters of mercury. (b) Some conditions that block or inhibit the flow of cerebrospinal fluid can be investigated by means of Queckenstedts test. In this procedure, the veins in the patients neck are compressed to make the blood pressure rise in the brain, which in turn should be transmitted to the cerebrospinal fluid. Explain how the level of fluid in the spinal tap can be used as a diagnostic tool for the condition of the patients spine. Figure P14.8arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning