CHEMISTRY-TEXT
8th Edition
ISBN: 9780134856230
Author: Robinson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13, Problem 13.53SP
Interpretation Introduction
Interpretation:
The reason due to which methyl alcohol and pentyl alcohol are insoluble and miscible in octane, respectively needs to be explained.
Concept introduction:
Pentyl alcohol
Methyl alcohol
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Suggest an explanation for the observations that propanol, C3H7OH, is miscible with water and that tricarbon octahydride, C3H8, is not soluble in water.
What is the boiling point elevation of a solution consisting of 125.1 g sucrose, C12H22O11, dissolved in 115.7 g of water, ? Kb = 0.512 °C/m.
The volume of the mixture prepared by taking 1.158 mol and 0.842 mol of water and ethanol, respectively, was measured as 68.16 cm3 at 25 ° C.Since the partial molar volume of water in the mixture is 16.98 cm3 / mol, find the partial molar volume of ethanol.Since the densities at 25ᴼC for pure water and ethanol are given as 0,9970 g / cm3 and 0,7852 g / cm3, respectively, find the volume change during the preparation of the mixture and interpret the result. (MSu: 18 g / mol; Methanol = 46 g / mol)
Chapter 13 Solutions
CHEMISTRY-TEXT
Ch. 13 - Prob. 13.1PCh. 13 - Prob. 13.2ACh. 13 - Prob. 13.3PCh. 13 - Prob. 13.4ACh. 13 - PRACTICE 12.5 A 50.0 mL sample of drinking water...Ch. 13 - APPLY 12.6 The legal limit for human exposure to...Ch. 13 - PRACTICE 12.7 What mass in grams of a 0.500 m...Ch. 13 - APPLY 12.8 What is the molality of a solution...Ch. 13 - PRACTICE 12.9 The density at 20°C of a 0.500 M...Ch. 13 - APPLY 12.10 The density at 20°C of a 0.258 m...
Ch. 13 - ThesolubilityofCO2inwateris 3.2102 M at 25 °C...Ch. 13 - APPLY 12.12 Use the Henry’s law constant you...Ch. 13 - PRACTICE 12.13 What is the vapor pressure in mm Hg...Ch. 13 - APPLY 12.14 A solution made by dissolving 8.110 g...Ch. 13 - PRACTICE 12.17 What is the vapor pressure of the...Ch. 13 - Conceptual APPLY 12.18 The following diagram shows...Ch. 13 - What is the normal boiling point in °C of an...Ch. 13 - APPLY 12.20 The following phase diagram shows a...Ch. 13 - Prob. 13.19PCh. 13 - APPLY 12.22 Cells in the human eye have an osmotic...Ch. 13 - PRACTICE 12.23 A solution prepared by dissolving...Ch. 13 - Prob. 13.22ACh. 13 - PROBLEM 12.25 What is the difference between a...Ch. 13 - PROBLEM 12.26 Urea has a high solubility in blood...Ch. 13 - Use Table 13.5 to calculate the osmotic pressure...Ch. 13 - Prob. 13.26PCh. 13 - Many people take vitamin supplements to promote...Ch. 13 - Prob. 13.28CPCh. 13 - Prob. 13.29CPCh. 13 - Prob. 13.30CPCh. 13 - Prob. 13.31CPCh. 13 - Prob. 13.32CPCh. 13 - Prob. 13.33CPCh. 13 - Prob. 13.34CPCh. 13 - Prob. 13.35CPCh. 13 - Prob. 13.36SPCh. 13 - 12.41 Why do ionic substances with higher lattice...Ch. 13 - Prob. 13.38SPCh. 13 - Prob. 13.39SPCh. 13 - Classify the strongest type of intermolecular...Ch. 13 - Classify the strongest type of intermolecular...Ch. 13 - Prob. 13.42SPCh. 13 - Prob. 13.43SPCh. 13 - Br2 is much more soluble in tetrachloromethane,...Ch. 13 - Predict whether the solubility of formaldehyde,...Ch. 13 - Prob. 13.46SPCh. 13 - Prob. 13.47SPCh. 13 - Arrange the following compounds in order of their...Ch. 13 - Prob. 13.49SPCh. 13 - Prob. 13.50SPCh. 13 - Prob. 13.51SPCh. 13 - Prob. 13.52SPCh. 13 - Prob. 13.53SPCh. 13 - The dissolution of CaCl2(s) in water is...Ch. 13 - The dissolution of NH4ClO4(s) in water is...Ch. 13 - Assuming that seawater is an aqueous solution of...Ch. 13 - Prob. 13.57SPCh. 13 - Propranolol°C16H21NO2) a so-called beta-blocker...Ch. 13 - Prob. 13.59SPCh. 13 - How would you prepare each of the following...Ch. 13 - Prob. 13.61SPCh. 13 - Prob. 13.62SPCh. 13 - Prob. 13.63SPCh. 13 - Prob. 13.64SPCh. 13 - Which of the following solutions has the higher...Ch. 13 - What is the mass percent concentration of the...Ch. 13 - Prob. 13.67SPCh. 13 - Prob. 13.68SPCh. 13 - Prob. 13.69SPCh. 13 - What is the concentration of each of the following...Ch. 13 - Prob. 13.71SPCh. 13 - The density of a 16.0 mass % solution of sulfuric...Ch. 13 - Prob. 13.73SPCh. 13 - What is the molality of the 40.0 mass % ethylene...Ch. 13 - Prob. 13.75SPCh. 13 - Prob. 13.76SPCh. 13 - Prob. 13.77SPCh. 13 - Prob. 13.78SPCh. 13 - Prob. 13.79SPCh. 13 - Look at the solubility graph in Figure 13.7, and...Ch. 13 - Prob. 13.81SPCh. 13 - Prob. 13.82SPCh. 13 - Prob. 13.83SPCh. 13 - Fish generally need an O2 concentration in water...Ch. 13 - At an altitude of 10, 000 ft, the partial pressure...Ch. 13 - Prob. 13.86SPCh. 13 - Prob. 13.87SPCh. 13 - Prob. 13.88SPCh. 13 - When solid CaCl2 is added to liquid water, the...Ch. 13 - Rank the following aqueous solutions from lowest...Ch. 13 - Which of the following aqueous solutions has the...Ch. 13 - What is the vapor pressure in mm Hg of a solution...Ch. 13 - What is the normal boiling point in oC of a...Ch. 13 - What is the freezing point in °C of a solution...Ch. 13 - Assuming complete dissociation, what is the...Ch. 13 - When 9.12 g of HCI was dissolved in 190 g of...Ch. 13 - Prob. 13.97SPCh. 13 - When 1 mol of NaCI is added to 1 L of water, the...Ch. 13 - Prob. 13.99SPCh. 13 - Draw a phase diagram showing how the phase...Ch. 13 - Prob. 13.101SPCh. 13 - What is the vapor pressure in mm Hg of the...Ch. 13 - What is the vapor pressure in mm Hg of a solution...Ch. 13 - What is the boiling point in oC of each of the...Ch. 13 - What is the freezing point in oC of each of the...Ch. 13 - Prob. 13.106SPCh. 13 - The van’t Hoff factor for KCl is i=1.85. What is...Ch. 13 - Hepatane (C7H16) and octane (C8H18) are...Ch. 13 - Prob. 13.109SPCh. 13 - Acetone, C3H6O , and ethyl acetate, C4H8O2, are...Ch. 13 - Prob. 13.111SPCh. 13 - Prob. 13.112SPCh. 13 - What is the mole fraction of each component in the...Ch. 13 - Prob. 13.114SPCh. 13 - A solution prepared by dissolving 3.00 g of...Ch. 13 - Prob. 13.116SPCh. 13 - Prob. 13.117SPCh. 13 - Prob. 13.118SPCh. 13 - What osmotic presure in mm Hg would you expect for...Ch. 13 - Prob. 13.120SPCh. 13 - Prob. 13.121SPCh. 13 - Prob. 13.122SPCh. 13 - If cost per gram were not a concern, which of the...Ch. 13 - Prob. 13.124SPCh. 13 - Met-enkephalin is one of the so-called endorphins,...Ch. 13 - Prob. 13.126SPCh. 13 - Prob. 13.127SPCh. 13 - Prob. 13.128SPCh. 13 - Prob. 13.129SPCh. 13 - How many grams of naphthalene, C10H8 (commonly...Ch. 13 - Prob. 13.131SPCh. 13 - Assuming that seawater is a 3.5 mass % solution of...Ch. 13 - There’s actually much more in seawater than just...Ch. 13 - Prob. 13.134SPCh. 13 - What is the van’t Hoff factor for K2SO4 in an...Ch. 13 - If the van’t Hoff factor for Lid in a 0.62 m...Ch. 13 - What is the value of the van’t Hoff factor for KCI...Ch. 13 - A solid mixture of KCI, KNO3, and Ba(N03)2 is...Ch. 13 - Prob. 13.139SPCh. 13 - An aqueous solution of a certain organic compound...Ch. 13 - Prob. 13.141SPCh. 13 - Prob. 13.142SPCh. 13 - A solution of 0.250 g of naphthalene (mothballs)...Ch. 13 - Prob. 13.144SPCh. 13 - Prob. 13.145SPCh. 13 - The steroid hormone estradiol contains only C, H,...Ch. 13 - Many acids are partially dissociated into ions in...Ch. 13 - Addition of 50.00 mL of 2.238 H2SO4 (solution...Ch. 13 - Prob. 13.149MPCh. 13 - Prob. 13.150MPCh. 13 - Combustion analysis of a 36.72-mg sample of the...Ch. 13 - Prob. 13.152MPCh. 13 - Prob. 13.153MPCh. 13 - Prob. 13.154MP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Ethylene glycol, CH2OHCH2OH is a liquid at room temperature and dissolves into water in all proportions. However, butane, C4H10, is a gas at room temperature and is insoluble in water. How do you account for these differences?arrow_forwardThe molal boiling point elevation constant =Kb·0.53°C·kgmol−1 for a certain substance X. When 7.3g of urea NH22CO are dissolved in 200.g of X, the solution boils at 120.5°C. Calculate the boiling point of pure X. Round your answer to 4 significant digits.arrow_forwardA hydrate of chromium(II) sulfate (CrSO4·XH2O) decomposes to produce 19.6% water & 80.4% AC. Calculate the water of crystallization for this hydrated compound. (The molar mass of anhydrous CrSO4 is 148.1 g/mol.) In other words, what is the X in the formula: CrSO4·XH2O?arrow_forward
- Which solid displays the greatest solubility in water at 80 °C? NaNO3 NaBr KNO3 KBrarrow_forward5. (a) The melting point of ammonia (NH3) is higher than that of methane (CH4) and yet these molecules have comparable molecular mass. Why does NH3 have a higher melting point than CH4? Explain in terms of intermolecular forces. (b) Predict the solubility of HF, HCl and Cl2 in water and explain your answer.arrow_forwardA small storage cabinet 2m x 2m x 3m contains an open 208 L drum of aqueous TEC at a concentration of 120 mg/L. The cabinet has been closed for over 2 months, so equilibrium conditions have been established. What is the TCE concentration in the water and vapor phases at this time? Assume that the temperature is 25 oC, R = 8.2 x 10-5 m3•atm/mole/K, and H = 0.0091 m3•atm/molearrow_forward
- Given that the solubility of any organic material in a given solvent is due to the intermolecular forces present between the solvent and solute, solvents like hexanes (the alkanes isomers of C6H14) are rarely used for extraction purposes. In the space provided here, suggest a reasonable explanation for this experimental observation.arrow_forwardLiquids that readily evaporate are classified as volatile liquids. Such liquids have measurable vapor pressures at or near room temperature. If the vapor pressure of two or more liquids are compared at the same temperature, the more volatile liquid will have the higher vapor pressure. The vapor pressure of acetone is 24.6 kPa (read: kiloPascals) at 293 K. Is acetone more or less volatile than the organic liquid used in this activity? Explain or demonstrate.arrow_forwardCalculate the solubility of nitrogen in water at an atmospheric pressure of 0.380 atm (a typical value at high altitude). Atmospheric Gas Mole Fraction kH mol/(L*atm) N2 7.81 x 10-1 6.70 x 10-4 O2 2.10 x 10-1 1.30 x 10-3 Ar 9.34 x 10-3 1.40 x 10-3 CO2 3.33 x 10-4 3.50 x 10-2 CH4 2.00 x 10-6 1.40 x 10-3 H2 5.00 x 10-7 7.80 x 10-4arrow_forward
- Which among the following would tin(II) hydroxide (Ksp = 1.4 x 10-28) be most soluble in? %3D O 2.13 mM SnCl2(aq) 2.13 mM NH3(aq) O Distilled water 2.13 mM HCl(aq)arrow_forwardThe ubiquitous single-cell yeast (S. cerevisiae) is roughly spherical with a “typical” diameter of 5 μm. Let’s make a rough approximation of how many water molecules are in a yeast cell.a) What is the molar volume of liquid water? You may assume dH2O = 1.00 g/mlb) What is the volume occupied by a single water molecule?c) Approximately how many molecules of water are in a “typical” yeast cell?Assume the cell is composed completely of pure water with density equal to 1.00 g/mL (a more realistic estimate is ~70% water content by volume, but don’t worry about this).arrow_forwardA student was instructed to determine the molecular weight of an unknown white powder. He remembered that one way to do this is by exploiting the colligative properties of solution. After a simple conductivity test, he found that an aqueous solution of the sample is not conductive. He dissolved 22.87 grams of the unknown sample in 0.500 kg of water. He found that the boiling point of the resulting solution was 100.13 OC under normal atmospheric conditions. Kb of water: 0.512 degrees celsius/m a. Calculate the molality of the resulting solutionb. How many moles of the sample did he dissolve to perform the experiment?c. What is the molecular weight of the unknown sample?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Solutions: Crash Course Chemistry #27; Author: Crash Course;https://www.youtube.com/watch?v=9h2f1Bjr0p4;License: Standard YouTube License, CC-BY