Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN: 9781305116399
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13, Problem 13.28P
(a) Given that the period of the Moon’s orbit about the Earth is 27.32 days and the nearly constant distance between the center of the Earth and the center of the Moon is 3.84 × 108 m, use Equation 13.11 to calculate the mass of the Earth. (b) Why is the value you calculate a bit too large?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
An object weighs 432 N on the surface of the earth. The earth has radius R. If the object is raised to a height of 3R above the earth's surface, what is its weight?
(a) Calculate the magnitude of the gravitational force exerted by Mars on a 65 kg human standing on the surface of Mars. (The mass of Mars is 6.4x1023 kg and its
radius is 3.4x106 m.)
240.0277
✓ N
(b) Calculate the magnitude of the gravitational force exerted by the human on Mars.
240.0277
N
(c) For comparison, calculate the approximate magnitude of the gravitational force of this human on a similar human who is standing 2.5 meters away.
1.76e8
XN
(d) What approximations or simplifying assumptions must you make in these calculations? (Note: Some of these choices are false because they are wrong physics!)
✔Treat Mars as though it were spherically symmetric.
Ignore the effects of the Sun, which alters the gravitational force that one object exerts on another.
✔Treat the humans as though they were points or uniform-density spheres.
O Use the same gravitational constant in (a) and (b) despite its dependence on the size of the masses.
Additional Materials
eBook
Suppose you could pack neutrons (mass = 1.67 × 10-27 kg) inside a small ball of radius 0.026 m in the same way as neutrons and protons are packed together in the nucleus of an atom. (a) Approximately how many neutrons would fit inside the ball? (b) A small object is placed 3.7 m from the center of the neutron-packed ball, and the ball exerts a gravitational force on it. When the object is released, what is the magnitude of the acceleration that it experiences? Ignore the gravitational force exerted on the object by the earth.
Chapter 13 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Ch. 13 - A planet has two moons of equal mass. Moon 1 is in...Ch. 13 - Superman stands on top of a very tall mountain and...Ch. 13 - An asteroid is in a highly eccentric elliptical...Ch. 13 - Prob. 13.4QQCh. 13 - A system consists of five particles. How many...Ch. 13 - Rank the following quantities of energy from...Ch. 13 - Prob. 13.3OQCh. 13 - Suppose the gravitational acceleration at the...Ch. 13 - Imagine that nitrogen and other atmospheric gases...Ch. 13 - An object of mass m is located on the surface of a...
Ch. 13 - Prob. 13.7OQCh. 13 - The vernal equinox and the autumnal equinox are...Ch. 13 - Rank the magnitudes of the following gravitational...Ch. 13 - The gravitational force exerted on an astronaut on...Ch. 13 - Prob. 13.11OQCh. 13 - Each Voyager spacecraft was accelerated toward...Ch. 13 - In his 1798 experiment, Cavendish was said to have...Ch. 13 - Prob. 13.3CQCh. 13 - Prob. 13.4CQCh. 13 - Prob. 13.5CQCh. 13 - Prob. 13.6CQCh. 13 - Prob. 13.7CQCh. 13 - Prob. 13.8CQCh. 13 - A satellite in low-Earth orbit is not truly...Ch. 13 - In introductory physics laboratories, a typical...Ch. 13 - Determine the order of magnitude of the...Ch. 13 - A 200-kg object and a 500-kg object are separated...Ch. 13 - During a solar eclipse, the Moon, the Earth, and...Ch. 13 - Two ocean liners, each with a mass of 40 000...Ch. 13 - Three uniform spheres of masses m1 = 2.00 kg, m2 =...Ch. 13 - Two identical isolated particles, each of mass...Ch. 13 - Prob. 13.8PCh. 13 - Two objects attract each other with a...Ch. 13 - Review. A student proposes to study the...Ch. 13 - Prob. 13.11PCh. 13 - Prob. 13.12PCh. 13 - Review. Miranda, a satellite of Uranus, is shown...Ch. 13 - (a) Compute the vector gravitational field at a...Ch. 13 - Three objects of equal mass are located at three...Ch. 13 - A spacecraft in the shape of a long cylinder has a...Ch. 13 - An artificial satellite circles the Earth in a...Ch. 13 - Io, a satellite of Jupiter, has an orbital period...Ch. 13 - A minimum-energy transfer orbit to an outer planet...Ch. 13 - A particle of mass m moves along a straight line...Ch. 13 - Plasketts binary system consists of two starts...Ch. 13 - Two planets X and Y travel counterclockwise in...Ch. 13 - Comet Halley (Fig. P13.23) approaches the Sun to...Ch. 13 - Prob. 13.24PCh. 13 - Use Keplers third law to determine how many days...Ch. 13 - Neutron stars are extremely dense objects formed...Ch. 13 - A synchronous satellite, which always remains...Ch. 13 - (a) Given that the period of the Moons orbit about...Ch. 13 - Suppose the Suns gravity were switched off. The...Ch. 13 - A satellite in Earth orbit has a mass of 100 kg...Ch. 13 - How much work is done by the Moons gravitational...Ch. 13 - How much energy is required to move a 1 000-kg...Ch. 13 - Prob. 13.33PCh. 13 - An object is released from rest at an altitude h...Ch. 13 - A system consists of three particles, each of mass...Ch. 13 - Prob. 13.36PCh. 13 - A 500-kg satellite is in a circular orbit at an...Ch. 13 - Prob. 13.38PCh. 13 - Prob. 13.39PCh. 13 - Prob. 13.40PCh. 13 - Prob. 13.41PCh. 13 - Prob. 13.42PCh. 13 - Prob. 13.43PCh. 13 - Prob. 13.44PCh. 13 - Prob. 13.45PCh. 13 - Prob. 13.46PCh. 13 - Ganymede is the largest of Jupiters moons....Ch. 13 - Prob. 13.48PCh. 13 - At the Earths surface, a projectile is launched...Ch. 13 - Prob. 13.50APCh. 13 - Prob. 13.51APCh. 13 - Voyager 1 and Voyager 2 surveyed the surface of...Ch. 13 - A satellite is in a circular orbit around the...Ch. 13 - Why is the following situation impossible? A...Ch. 13 - Let gM represent the difference in the...Ch. 13 - Prob. 13.56APCh. 13 - Prob. 13.57APCh. 13 - Prob. 13.58APCh. 13 - Prob. 13.59APCh. 13 - Two spheres having masses M and 2M and radii R and...Ch. 13 - Two hypothetical planets of masses m1 and m2 and...Ch. 13 - (a) Show that the rate of change of the free-fall...Ch. 13 - A ring of matter is a familiar structure in...Ch. 13 - Prob. 13.64APCh. 13 - Review. As an astronaut, you observe a small...Ch. 13 - Prob. 13.66APCh. 13 - Studies of the relationship of the Sun to our...Ch. 13 - Review. Two identical hard spheres, each of mass m...Ch. 13 - Prob. 13.69APCh. 13 - Prob. 13.70APCh. 13 - Prob. 13.71APCh. 13 - Prob. 13.72APCh. 13 - Prob. 13.73APCh. 13 - Two stars of masses M and m, separated by a...Ch. 13 - Two identical particles, each of mass 1 000 kg,...Ch. 13 - Prob. 13.76APCh. 13 - As thermonuclear fusion proceeds in its core, the...Ch. 13 - The Solar and Heliospheric Observatory (SOHO)...Ch. 13 - The oldest artificial satellite still in orbit is...Ch. 13 - Prob. 13.80CP
Additional Science Textbook Solutions
Find more solutions based on key concepts
Choose the best answer to each of the following. Explain your reasoning. If Earth were twice as far as it actua...
Cosmic Perspective Fundamentals
True or false? Some trails are considered vestigial because they existed long ago.
Biological Science (6th Edition)
Separate the list P,F,V,,T,a,m,L,t, and V into intensive properties, extensive properties, and nonproperties.
Fundamentals Of Thermodynamics
How could you separate a mixture of the following compounds? The reagents available to you are water, either, 1...
Organic Chemistry (8th Edition)
1. Rub your hands together vigorously. What happens? Discuss the energy transfers and transformations that take...
College Physics: A Strategic Approach (3rd Edition)
The method to determine the volume of a powered solid, liquid and a rock needs to be determined. Concept introd...
Living By Chemistry: First Edition Textbook
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Let gM represent the difference in the gravitational fields produced by the Moon at the points on the Earths surface nearest to and farthest from the Moon. Find the fraction gM/g, where g is the Earths gravitational field. (This difference is responsible for the occurrence of the lunar tides on the Earth.)arrow_forwardThe Sun has a mass of approximately 1.99 1030 kg. a. Given that the Earth is on average about 1.50 1011 m from the Sun, what is the magnitude of the Suns gravitational field at this distance? b. Sketch the magnitude of the gravitational field due to the Sun as a function of distance from the Sun. Indicate the Earths position on your graph. Assume the radius of the Sun is 7.00 108 m and begin the graph there. c. Given that the mass of the Earth is 5.97 1024 kg, what is the magnitude of the gravitational force on the Earth due to the Sun?arrow_forwardThe Scope and Scale of Physics Find the order of magnitude of the following physical quantities. (a) The mass of Earth’s atmosphere: 5.11018kg : (b) The mass of the Moon’s atmosphere: 25,000kg ; (c) The mass of Earth’s hydrosphere: 1.41021kg : (d) The mass of Earth: 5.971024kg : (e) The mass of the Moon: 7.341022kg : (f) The Earth-Moon distance (semimajor axis): 3.84108m : (g) The mean Earth-Sun distance: 1.51011m : (h) The equatorial radius of Earth: 6.38106m : (i) The mass of an electron: 9.111031kg : (j) The mass of a proton: 1.671027kg : (k) The mass of the Sun: 1.991030kg .arrow_forward
- The planet Mars has a mass of 6.42x10^23 kg and a radius of 3.38x10^6 m. Determine how much a 50 kg person would weigh on Mars.arrow_forwardThe mass of a certain planet is 3.00 x 1026 kg. (a) The planet has a moon whose mean orbital radius is 2.90 x 108 m. What is the period of this moon? (b) The planet has a second moon whose period is 2.30 x 106 s. What is the mean orbital radius of this second moon? eBookarrow_forwardA climber who is 75 kgs in mass reaches the peak of a mountain. If the mutual attraction between the climber and the Earth is 735.09 N, how tall is the mountain in meters? radius of the Earth = 6.38 x 106 m mass of the Earth = 5.98 x 1024 kgsarrow_forward
- A solid uniform sphere has a mass of 4.00 x 10* kg and a radius of 1.5 m. (Use the following as necessary: r and m. Assume SI units. Do not enter units in your ansWers.) (a) What is the magnitude of the gravitational force due to the sphere on a particle of mass m located at a distance of 1.6 m from the center of the sphere? F = N. (b) What if it is 1.4 m from the center of the sphere? F = N. (c) Write a general expression for the magnitude of the gravitational force on the particle at a distancer 1.5 m from the center of the sphere. F = Additional Materials eBook Powers of Tenarrow_forwardSchwarzschild radius RS of a black hole is the maximum distance from the black hole’s center at which light cannot escape its gravitational field. The quantity RS (with dimensions of length) is dependent on the mass of the black hole M, the speed of light c, and the gravitational constant G. Based on the dimensions of these four parameters, predict an equation for the Schwarzschild radius. Hint: G has dimensions of [L3/MT2]arrow_forwardThe radius of Earth is 6.371 × 103 km. a. Find the altitude above Earth’s surface where Earth’s gravitational field strength would be two-thirds of its value at the surface. (answer in km) b. Find the altitude above Earth’s surface where Earth’s gravitational field strength would be one-fifth of its value at the surface. (answer in km)arrow_forward
- According to Lunar Laser Ranging experiments the average distance L M from the Earth to the Moon is approximately 3.85 X 105 km. The Moon orbits the Earth and completes one revolution in approximately 27.5 days (a sidereal month). Calculate the mass of the Earth and provide your answer in units of 1024 kg. For example, if your answer is 2.7×1024 enter 2.7.arrow_forwardThe moon has a mass of 7.34 x 1022 kg and a radius of 1.74x106 m. If you have a mass of 66 kg, how strong is the force between you and the moon?arrow_forwardA person has a weight of 153N on the surface of planet earth. If they weigh 259 N on the surface of another planet, what is the radius of that planet in meters? The planet has a mass of 8.478 x 1023kg.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Gravitational Force (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=pxp1Z91S5uQ;License: Standard YouTube License, CC-BY