(a)
To draw: the figureand complete the table.
(a)
Answer to Problem 21PPS
Name | Triangular Pyramid | Square Pyramid | Pentagonal Pyramid |
Vertices | 4 | 5 | 6 |
Faces | 4 | 5 | 6 |
Edges | 6 | 8 | 10 |
Explanation of Solution
Given:
Consider the table
Name | Triangular Pyramid | Square Pyramid | Pentagonal Pyramid |
Vertices | 4 | 5 | |
Faces | 6 | ||
Edges | 8 |
Calculation:
The objective is to complete the table.
Take the triangular pyramid. The figure of a triangular pyramid is shown below.
The faces of the triangular pyramid are
The edges are the line where the faces intersect. The edges are
Therefore, the number of faces of the triangular pyramid is 4 and the number of edges of the triangular pyramid is 6.
Next, take the square pyramid. The figure of a square pyramid is shown below.
The faces of the square pyramid are
The edges are the line where the faces intersect. The edges are
Therefore, the number of faces of the square pyramid is 5 and the number of edges of the triangular pyramid is 8.
Lastly, take the pentagonal pyramid. The figure of a pentagonal pyramid is shown below.
The vertices are
The faces of the pentagonal pyramid are
The edges are the line where the faces intersect. The edges are
Therefore, the number of vertices of the pentagonal pyramid is 6, the number of faces of the pentagonal pyramid is 6 and the number of edges of the triangular pyramid is 10.
Conclusion:
Therefore, the complete table is
Name | Triangular Pyramid | Square Pyramid | Pentagonal Pyramid |
Vertices | 4 | 5 | 6 |
Faces | 4 | 5 | 6 |
Edges | 6 | 8 | 10 |
(b)
To explain:about the number of edges,vertices and faces.
(b)
Answer to Problem 21PPS
Here,
Explanation of Solution
The objective is to state the relation between the vertices, faces and the edges.
The faces and the number of vertices of a pyramid are always equal. The relation between vertices, faces and the edges is the number of edges is equal to the sum of the number of vertices and the number faces minus 2.
That is,
Conclusion:
Therefore,
(c)
To find: the equationcomparing vertices edges and faces
(c)
Answer to Problem 21PPS
The equation is
Explanation of Solution
Calculation:
The objective is to write an equation that compares the sum of the number of vertices V and the number of faces F to the number of edges E.
The relation between edges, vertices and faces is
No. of Edges = No. of Vertices + No. of faces - 2
Conclusion:
Therefore,the equation is
Chapter 12 Solutions
Pre-Algebra Student Edition
Additional Math Textbook Solutions
University Calculus: Early Transcendentals (4th Edition)
A First Course in Probability (10th Edition)
Elementary Statistics (13th Edition)
Thinking Mathematically (6th Edition)
Elementary Statistics: Picturing the World (7th Edition)
- Algebra and Trigonometry (6th Edition)AlgebraISBN:9780134463216Author:Robert F. BlitzerPublisher:PEARSONContemporary Abstract AlgebraAlgebraISBN:9781305657960Author:Joseph GallianPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- Algebra And Trigonometry (11th Edition)AlgebraISBN:9780135163078Author:Michael SullivanPublisher:PEARSONIntroduction to Linear Algebra, Fifth EditionAlgebraISBN:9780980232776Author:Gilbert StrangPublisher:Wellesley-Cambridge PressCollege Algebra (Collegiate Math)AlgebraISBN:9780077836344Author:Julie Miller, Donna GerkenPublisher:McGraw-Hill Education