Concept explainers
An aluminium
Want to see the full answer?
Check out a sample textbook solutionChapter 12 Solutions
University Physics Volume 1
Additional Science Textbook Solutions
Cosmic Perspective Fundamentals
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Organic Chemistry (8th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Living By Chemistry: First Edition Textbook
Genetic Analysis: An Integrated Approach (3rd Edition)
- A steel cable 2.00 m in length and with cross-sectional radius 0.350 mm is used to suspend from the ceiling a 10.0-kg model aircraft that is flying in a horizontal circle with an angular speed of 6.00 rad/s. What is the strain produced in the cable?arrow_forwardIn Example 14.3, we found that one of the steel cables supporting an airplane at the Udvar-Hazy Center was under a tension of 9.30 103 N. Assume the cable has a diameter of 2.30 era and an initial length of 8.00 m before the plane is suspended on the cable. How much longer is the cable when the plane is suspended on it?arrow_forwardConsider a nanotube with a Youngs modulus of 2.130 1012 N/m2 that experiences a tensile stress of 5.3 1010 N/m2. Steel has a Youngs modulus of about 2.000 1011 Pa. How much stress would cause a piece of steel to experience the same strain as the nanotube?arrow_forward
- Assume Youngs modulus for bone is 1.50 1010 N/m2. The bone breaks if stress greater than 1.50 108 N/m2 is imposed on it. (a) What is the maximum force that can be exerted on the femur bone in the leg if it has a minimum effective diameter of 2.50 cm? (b) If this much force is applied compressively, by how much does the 25.0-cm-long bone shorten?arrow_forwardA brass wire and a steel wire, both of the same length, are extended by 1.0 mm under the same force. Is the cross-sectional radius of the brass wire more, less, or equal to the cross-sectional radius of the steel wire? Explain. Youngs moduli for brass and steel are 1.0 1010 N/m2 and 2.0 1011 N/m2, respectively.arrow_forwardWhat Is Static Equilibrium? Problems 13 are grouped. 1. C A ball is attached to a strong, lightweight rod (Fig. P14.1). The rod is supported by a horizontal pin near the top. The ball is at rest. Is the ball in static equilibrium? If not, why not? If so, which type of equilibrium is itstable, unstable, or neutral? Hint: What would happen if you displaced the ball slightly? FIGURE P14.1arrow_forward
- Why is the following situation impossible? A worker in a factory pulls a cabinet across the floor using a rope as shown in Figure P12.36a. The rope make an angle = 37.0 with the floor and is tied h1 = 10.0 cm from the bottom of the cabinet. The uniform rectangular cabinet has height = 100 cm and width w = 60.0 cm, and it weighs 400 N. The cabinet slides with constant speed when a force F = 300 N is applied through the rope. The worker tires of walking backward. He fastens the rope to a point on the cabinet h2 = 65.0 cm off the floor and lays the rope over his shoulder so that he can walk forward and pull as shown in Figure P12.36b. In this way, the rope again makes an angle of = 37.0 with the horizontal and again has a tension of 300 N. Using this technique, the worker is able to slide the cabinet over a long distance on the floor without tiring. Figure P12.36 Problems 36 and 44.arrow_forwardA copper rod with length 1.4 m and cross-sectional area 2.0 cm2 is fastened to a steel rod of length L and cross-sectional area 1.0 cm2. The compound structure is pulled on each side by two forces of equal magnitude 6.00 104 N (Fig. P14.57). Find the length L of the steel rod if the elongations (L) of the two rods are equal. Use the values Ysteel = 2.0 1011 Pa and YCu = 1.1 1011 Pa. FIGURE P14.57arrow_forwardProblems 33 and 34 are paired. One end of a uniform beam that weighs 2.80 102 N is attached to a wall with a hinge pin. The other end is supported by a cable making the angles shown in Figure P14.33. Find the tension in the cable. FIGURE P14.33 Problems 33 and 34.arrow_forward
- A One end of a metal rod of weight Fg and length L presses against a corner between a wall and the floor (Fig. P14.64). A rope is attached to the other end of the rod. Find the magnitude of the tension in the rope if the angle between the rod and the rope is 90.arrow_forwardA high-carbon steel wire, circular in cross-section, has a diameter of 14 mm. What is the force (in newtons) needed to break it? The ultimate tensile stress of high-carbon steel is 1.0 x 109 Pa.arrow_forwardA biomechanical model of the bones and biceps muscles of a person's arm supporting a mass m=2 kg is shown below. The weight of the forearm is 9 N. If the cross section of the tendon AB is 28 mm? what is the average normai stress in the tendon? u 290 mm 50 mm 200 mm 150 mmarrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning