Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
4th Edition
ISBN: 9780134110684
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12, Problem 62EAP
A 120-cm-wide sign hangs from a 5.0 kg, 200-cm-long pole. A cable of negligible mass supports the end of the rod as shown in FIGURE P12.62. What is the maximum mass of the sign if the maximum tension in the cable without breaking is 300 N?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The 3.0-m-long, 100 kg rigid beam of FIGURE EX12.31 is
supported at each end. An 80 kg student stands 2.0 m from
support 1. How much upward force does each support exert on
the beam?
FIGURE EX12.31
Support 1
2.0 m
3.0 m
Support 2
62. I A 120-cm-wide sign hangs from a
5.0 kg. 200-cm-long pole. A cable of
negligible mass supports the end of the
rod as shown in FIGURE P12.62. What
is the maximum mass of the sign if the
maximum tension in the cable without
Cable
250 cm
breaking is 300 N?
200 cm
PRISICS
SHOPPE
80 cm
FIGURE P12.62
3/3
1.65 m
F
g1
F
g2
26. In exercise physiology studies, it is sometimes important to
BIO determine the location of a person's center of mass. This
V determination can be done with the arrangement shown in
Figure P12.26. A light plank rests on two scales, which read
= 380 N and F, = 320 N. A distance of 1.65 m sepa-
rates the scales. How far from the woman's feet is her center
of mass?
Do Chapter 12, Problem 26. This is one way to
measure a person's center of mass. She lies on a
plank on two scales: one at her head, the other at
her feet. They are 1.71 meters apart. Her head
scale reads 378 N, and her foot scale reads 389 N.
How far from her feet is her center of mass?
Chapter 12 Solutions
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Ch. 12 - Prob. 1CQCh. 12 - If the angular velocity w is held constant, by...Ch. 12 - FIGURE Q12.3 shows three rotating disks, all of...Ch. 12 - 4. Must an object be rotating to have a moment of...Ch. 12 - 5. The moment of inertia of a uniform rod about an...Ch. 12 - 6. You have two solid steel spheres. Sphere 2 has...Ch. 12 - The professor hands you two spheres. They have the...Ch. 12 - Six forces are applied to the door in FIGURE...Ch. 12 - Prob. 9CQCh. 12 - Rank in order, from largest to smallest, the...
Ch. 12 - The solid cylinder and cylindrical shell in FIGURE...Ch. 12 - A diver in the pike position (legs straight, hands...Ch. 12 - Prob. 13CQCh. 12 - A high-speed drill reaches 2000 rpm in 0.50 s. a....Ch. 12 - A skater holds her arms outstretched as she spins...Ch. 12 - A ceiling fan with 80-cm-diameter blades is...Ch. 12 - An 18-cm-long bicycle crank arm, with a pedal at...Ch. 12 - Prob. 5EAPCh. 12 - The three masses shown in FIGURE EX12.6 are...Ch. 12 - The three masses shown in FIGURE EX12.7 are...Ch. 12 - A 100 g ball and a 200 g ball are connected by a...Ch. 12 - A thin, 100 g disk with a diameter of 8.0 cm...Ch. 12 - What is the rotational kinetic energy of the...Ch. 12 - The three200g masses in FIGURE EX12.11 are...Ch. 12 - A drum major twirls a 96-cm-long, 400 g baton...Ch. 12 - The four masses shown in FIGURE EX12.13 are...Ch. 12 - The four masses shown in FIGURE EXI2.13 are...Ch. 12 - The three masses shown in FIGURE EXI2.15 are...Ch. 12 - A 12-cm-diameter CD has a mass of 21 g. What is...Ch. 12 - A 25 kg solid door is 220 cm tall, 91 cm wide....Ch. 12 - Prob. 18EAPCh. 12 - In FIGURE EX12.19, what magnitude force provides...Ch. 12 - The 20-cm-diameter disk in FIGURE EX12.20 can...Ch. 12 - The axle in FIGURE EXI2.21 is half the distance...Ch. 12 - A 4.0-rn-long, 500 kg steel beam extends...Ch. 12 - An athlete at the gym holds a 3.0 kg steel ball in...Ch. 12 - An object’s moment of inertia is 2.0 kg m2. Its...Ch. 12 - An object whose moment of inertia is 4.0 kg m2...Ch. 12 - A 1.0 kg ball and a 2.0 kg ball are connected by a...Ch. 12 - Starting from rest, a 12-cm-diameter compact disk...Ch. 12 - A 4.0 kg, 36-cm-diameter metal disk, initially at...Ch. 12 - The two objects in FIGURE EXI2.29 are balanced on...Ch. 12 - Prob. 30EAPCh. 12 - The 3.0-rn-long, 100 kg rigid beam of FIGURE...Ch. 12 - A 5.0 kg cat and a 2.0 kg bowl of tuna fish are at...Ch. 12 - A car tire is 60cm in diameter. The car is...Ch. 12 - A 500 g, 8.0-cm-diameter can is filled with...Ch. 12 - Prob. 35EAPCh. 12 - A solid sphere of radius R is placed at a height...Ch. 12 - Prob. 37EAPCh. 12 - Evaluate the cross products AB and CD .Ch. 12 - Prob. 39EAPCh. 12 - Force F=10j N is exerted on a particle at 5i+5j m....Ch. 12 - A 1.3 kg ball on the end of a lightweight rod is...Ch. 12 - What are the magnitude and direction of the...Ch. 12 - What is the angular momentum vector of the 2.0 kg,...Ch. 12 - Prob. 44EAPCh. 12 - Prob. 45EAPCh. 12 - A 2.0 kg, 20-cm-diameter turntable rotates at 100...Ch. 12 - Prob. 47EAPCh. 12 - A toy gyroscope has a ring of mass M and radius R...Ch. 12 - Prob. 49EAPCh. 12 - Prob. 50EAPCh. 12 - Determine the moment of inertia about the axis of...Ch. 12 - What is the moment of inertia of a 2.0 kg,...Ch. 12 - Calculate by direct integration the moment of...Ch. 12 - Calculate the moment of inertia of the rectangular...Ch. 12 - a. A disk of mass M and radius R has a hole of...Ch. 12 - Consider a solid cone of radius R, height H, and...Ch. 12 - Prob. 57EAPCh. 12 - A 3.0-m-long ladder, as shown in Figure 12.35....Ch. 12 - In FIGURE P12.59, an 80 kg construction worker...Ch. 12 - Prob. 60EAPCh. 12 - Prob. 61EAPCh. 12 - A 120-cm-wide sign hangs from a 5.0 kg,...Ch. 12 - Prob. 63EAPCh. 12 - Flywheels are large, massive wheels used to store...Ch. 12 - of mass m1and m2are connected by a massless string...Ch. 12 - The 2.0 kg, 30-cm-diameter disk in FIGURE P12.66...Ch. 12 - A 30-cm-diameter, 1.2 kg solid turntable rotates...Ch. 12 - Your engineering team has been assigned the task...Ch. 12 - A hollow sphere is rolling along a horizontal...Ch. 12 - A 750 g disk and a 760 g ring, both 15 cm in...Ch. 12 - A cylinder of radius R, length L. and mass M is...Ch. 12 - The 5.0 kg, 60-cm-diameter disk in FIGURE P12.72...Ch. 12 - A thin, uniform rod of length L and mass M is...Ch. 12 - A long, thin rod of mass M and length L is...Ch. 12 - The marble rolls down the track shown in FIGURE...Ch. 12 - sThe sphere of mass M and radius R in FIGURE...Ch. 12 - A satellite follows the elliptical orbit shown in...Ch. 12 - A 10 g bullet traveling at 400 m/s strikes a 10...Ch. 12 - A 200 g, 40-cm-diameter turntable rotates on...Ch. 12 - Luc, who is 1.80 m tall and weighs 950 N, is...Ch. 12 - A merry-go-round is a common piece of playground...Ch. 12 - A 45 kg figure skater is spinning on the toes of...Ch. 12 - Prob. 83EAPCh. 12 - The earth’s rotation axis, which is tilted 23.5...Ch. 12 - sThe bunchberry flower has the fastest-moving...Ch. 12 - The two blocks in FIGURE CP12.86 are connected by...Ch. 12 - A rod of length L and mass M has a nonuniform mass...Ch. 12 - In FIGURE CP12.88, a 200 g toy car is placed on a...Ch. 12 - Prob. 89EAPCh. 12 - A 75 g, 30-cm-long rod hangs vertically on a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A stepladder of negligible weight is constructed as shown in Figure P12.40, with AC = BC = . A painter of mass m stands on the ladder a distance d from the bottom. Assuming the floor is frictionless, find (a) the tension in the horizontal bar DE connecting the two halves of the ladder, (b) the normal forces at A and B, and (c) the components of the reaction force at the single hinge C that the left half of the ladder exerts on the right half. Suggestion: Treat the ladder as a single object, but also treat each half of the ladder separately. Figure P12.40 Problems 40 and 41.arrow_forwardWhen a circus performer performing on the rings executes the iron cross, he maintains the position at rest shown in Figure P12.37a. In this maneuver, the gymnasts feet (not shown) are off the floor. The primary muscles involved in supporting this position are the latissimus dorsi (lats) and the pectoralis major (pecs). One of the rings exerts an upward force Fk on a hand as show n in Figure P12.37b. The force Fs, is exerted by the shoulder joint on the arm. The latissimus dorsi and pectoralis major muscles exert a total force Fm on the arm. (a) Using the information in the figure, find the magnitude of the force Fm for an athlete of weight 750 N. (b) Suppose a performer in training cannot perform the iron cross but can hold a position similar to the figure in which the arms make a 45 angle with the horizontal rather than being horizontal. Why is this position easier for the performer? Figure P12.37arrow_forwardA uniform beam resting on two pivots has a length L = 6.00 m and mass M = 90.0 kg. The pivot under the left end exerts a normal force n1 on the beam, and the second pivot located a distance = 4.00 m from the left end exerts a normal force n2. A woman of mass m = 55.0 kg steps onto the left end of the beam and begins walking to the right as in Figure P10.28. The goal is to find the womans position when the beam begins to tip. (a) What is the appropriate analysis model for the beam before it begins to tip? (b) Sketch a force diagram for the beam, labeling the gravitational and normal forces acting on the beam and placing the woman a distance x to the right of the first pivot, which is the origin. (c) Where is the woman when the normal force n1 is the greatest? (d) What is n1 when the beam is about to tip? (e) Use Equation 10.27 to find the value of n2 when the beam is about to tip. (f) Using the result of part (d) and Equation 10.28, with torques computed around the second pivot, find the womans position x when the beam is about to tip. (g) Check the answer to part (e) by computing torques around the first pivot point. Figure P10.28arrow_forward
- A uniform beam of length L and mass m shown in Figure P12.8 is inclined at an angle to the horizontal. Its upper end is connected to a wall by a rope, and its lower end rests on a rough, horizontal surface. The coefficient of static friction between the beam and surface is s. Assume the angle is such that the static friction force is at its maximum value. (a) Draw a force diagram for the beam. (b) Using the condition of rotational equilibrium, find an expression for the tension T in the rope in terms of m, g, and . (c) Using the condition of translational equilibrium, find a second expression for T in terms of s, m, and g. (d) Using the results from parts (a) through (c), obtain an expression for s involving only the angle . (e) What happens if the ladder is lifted upward and its base is placed back on the ground slightly to the left of its position in Figure P12.8? Explain. Figure P12.8arrow_forwardWhy is the following situation impossible? A uniform beam of mass mk = 3.00 kg and length = 1.00 m supports blocks with masses m1 = 5.00 kg and m2 = 15.0 kg at two positions as shown in Figure P12.2. The beam rests on two triangular blocks, with point P a distance d = 0.300 m to the right of the center of gravity of the beam. The position of the object of mass m2 is adjusted along the length of the beam until the normal force on the beam at O is zero. Figure P12.2arrow_forwardRuby, with mass 55.0 kg, is trying to reach a box on a high shelf by standing on her tiptoes. In this position, half her weight is supported by the normal force exerted by the floor on the toes of each foot as shown in Figure P14.75A. This situation can be modeled mechanically by representing the force on Rubys Achilles tendon with FA and the force on her tibia as FT as shown in Figure P14.75B. What is the value of the angle and the magnitudes of the forces FA and FT? FIGURE P14.75arrow_forward
- Three forces are exerted on the disk shown in Figure P12.71,and their magnitudes are F3 = 2F2 = 2F1. The disks outer rimhas radius R, and the inner rim has radius R/2. As shown in thefigure, F1 and F3 are tangent to the outer rim of the disk, and F2 is tangent to the inner rim. F3 is parallel to the x axis, F2 is parallel to the y axis, and F1 makes a 45 angle with the negative x axis. Find expressions for the magnitude of each torque exertedaround the center of the disk in terms of R and F1. FIGURE P12.71 Problems 71-75arrow_forwardA 215-kg robotic arm at an assembly plant is extended horizontally (Fig. P14.32). The massless support rope attached at point B makes an angle of 15.0 with the horizontal, and the center of mass of the arm is at point C. a. What is the tension in the support rope? b. What are the magnitude and direction of the force exerted by the hinge A on the robotic arm to keep the arm in the horizontal position? FIGURE P14.32arrow_forwardA uniform plank 6.0 m long rests on two supports,2.5 m apart (Fig.P12.44).The gravitational force on the plank is 100 N.The left end of the plank is 1.5 m to the left of the left support,so the plank is not centered on the supports.A persom is standing on the plank half a meter to the right of the right support.The gravitational force on this person is 80.0 N.How far to right can the person walk before the plank begins to tip?arrow_forward
- 0.20 L 0.40 L 3. The foot of a ladder rests against a wall and its top is held by a tie rope, as shown in the figure. The ladder weighs 100 N, & its center of gravity is 0.40 of its length from the foot. A 150 N child hangs from the rung that is 0.20 of the length from the top. Determine the tension in the tie rope and the components of the force on the foot of the ladder. Tie rope IS0 N 37 100 Narrow_forwardA 10.0-kg monkey climbs a uniform ladder with weight 1.20 × 102 N and length L = 3.00 m as shown in Figure P12.14. The ladder rests against the wall and makes an angle of θ = 60.0° with the ground. The upper and lower ends of the ladder rest on frictionless surfaces. The lower end is connected to the wall by a horizontal rope that is frayed and can support a maximum tension of only 80.0 N. (a) Draw a force diagram for the ladder.(b) Find the normal force exerted on the bottom of the ladder. (c) Find the tension in the rope when the monkey is two-thirds of the way up the ladder. (d) Find the maximum distance d that the monkey can climb up the ladder before the rope breaks. (e) If the horizontal surface were rough and the rope were removed, how would your analysis of the problem change? What other information would you need to answer parts (c) and (d)?arrow_forwardWhen you bend over, a series of large muscles, the erector spinae, pull on your spine to hold you up. The following figure shows a simplified model of the spine as a rod of length L that pivots at its lower end. In this model, the center of gravity of the 270 N270 N weight of the upper torso is at the center of the spine. The 140 N140 N weight of the head and arms acts at the top of the spine. The erector spinae muscles are modeled as a single muscle that acts at a 1212-degree angle to the spine. Suppose the person in the figure bends over to an angle of 3030 degrees from horizontal. The center of gravity is half the length, and the center of gravity for the upper torso is 2/32/3 of the length A. What is the tension in the erector muscle? B. A force from the pelvic girdle acts on the base of the spine. What is the component of this force in the direction parallel to the spine? This large force is the cause of many back injuries.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY