College Physics (10th Edition)
10th Edition
ISBN: 9780321902788
Author: Hugh D. Young, Philip W. Adams, Raymond Joseph Chastain
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12, Problem 21P
(a)
To determine
The location of nodes along the pipe if the pipe is open at both ends.
(b)
To determine
The location of nodes along the pipe if the pipe is open at the right end and closed at left end.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Standing sound waves are produced in a pipe that is 1.20 m long. For the fundamental and first two overtones, determine the locations along the pipe (measured from the left end) of the displacement nodes and the pressure nodes if (a) the pipe is open at both ends and (b) the pipe is closed at the left end and open at the right end.
Standing sound waves are produced in a pipe that is 1.80 m long.
a)If the pipe is open at both ends, determine the locations along the pipe (measured from the left end) of the displacement nodes for the first and second overtone?
b)If the pipe is closed at the left end and open at the right end, determine the locations along the pipe (measured from the left end) of the displacement nodes for the fundamental frequency, first and the second overtone?
A pipe that is open at both ends has a fundamental frequency of 311 Hz when the speed of sound in air is 346 m/s.
(a) What is the length of the pipe? m(b) What are the next two harmonics?
1st Harmonic
= Hz
2nd Harmonic
= Hz
Chapter 12 Solutions
College Physics (10th Edition)
Ch. 12 - What kinds of energy are associated with waves on...Ch. 12 - Sci-fi movies sometimes show the explosion of a...Ch. 12 - Which of the characteristics of a sound wave...Ch. 12 - Energy can be transferred along a string by wave...Ch. 12 - On an episode of Mythbusters, rock singer Jaime...Ch. 12 - Prob. 6CQCh. 12 - Two tuning forks have identical frequencies, but...Ch. 12 - (a) Does a sound level of zero decibels mean that...Ch. 12 - Players of stringed instruments tune them by...Ch. 12 - You are standing several meters from the railroad...
Ch. 12 - TV weather forecasters often refer to Doppler...Ch. 12 - A wire under tension and vibrating in its first...Ch. 12 - A segment A of wire stretched tightly between two...Ch. 12 - A string that is 6.0 m long is tied between two...Ch. 12 - An organ pipe open at one end, but closed at the...Ch. 12 - A person listening to a siren from a stationary...Ch. 12 - A string of length 0.600 m is vibrating at 100.0...Ch. 12 - When a 15 kg mass is hung vertically from a thin,...Ch. 12 - Prob. 7MCPCh. 12 - An organ pipe open at both ends is resonating in...Ch. 12 - Prob. 9MCPCh. 12 - Traffic noise on Beethoven Boulevard has an...Ch. 12 - A thin, light string supports a weight W hanging...Ch. 12 - String A weighs twice as much as string B. Both...Ch. 12 - (a) Audible wavelengths. The range of audible...Ch. 12 - Prob. 2PCh. 12 - If an earthquake wave having a wavelength of 13 km...Ch. 12 - A fisherman notices that his boat is moving up and...Ch. 12 - A steel wire is 2.00 m long and is stretched with...Ch. 12 - With what tension must a rope with length 2.50 m...Ch. 12 - One end of a horizontal rope is attached to a...Ch. 12 - Prob. 8PCh. 12 - A certain transverse wave is described by the...Ch. 12 - Transverse waves on a string have wave speed 8.00...Ch. 12 - The equation describing a transverse wave on a...Ch. 12 - Transverse waves are traveling on a long string...Ch. 12 - Mapping the ocean floor. The ocean floor is mapped...Ch. 12 - In Figure 12.38, each pulse is traveling on a...Ch. 12 - Prob. 15PCh. 12 - A piano tuner stretches a steel piano wire with a...Ch. 12 - A physics student suspends a 1 kg mass from a...Ch. 12 - A wire with mass 40.0 g is stretched so that its...Ch. 12 - The portion of string between the bridge and upper...Ch. 12 - Guitar string. One of the 63.5-cm-long strings of...Ch. 12 - Prob. 21PCh. 12 - Find the fundamental frequency and the frequency...Ch. 12 - The longest pipe found in most medium-sized pipe...Ch. 12 - The fundamental frequency of a pipe that is open...Ch. 12 - The role of the mouth in sound. The production of...Ch. 12 - The end of a stopped pipe is to be cut off so that...Ch. 12 - Prob. 27PCh. 12 - Singing in the shower! Assume that your shower is...Ch. 12 - You blow across the open mouth of an empty test...Ch. 12 - Two small speakers A and B are driven in step at...Ch. 12 - In a certain home sound system, two small speakers...Ch. 12 - Prob. 32PCh. 12 - Human hearing. The human outer ear contains a more...Ch. 12 - Ultrasound and infrasound. (a) Whale...Ch. 12 - A 75.0 cm wire of mass 5.625 g is tied at both...Ch. 12 - A small omnidirectional stereo speaker produces...Ch. 12 - Find the intensity (in W/m2) of (a) a 55.0 dB...Ch. 12 - Find the noise level (in dB) of a sound having an...Ch. 12 - (a) By what factor must the sound intensity be...Ch. 12 - Eavesdropping! You are trying to overhear a juicy...Ch. 12 - Energy delivered to the ear. Sound is detected...Ch. 12 - (a) If the amplitude in a sound wave is tripled,...Ch. 12 - A baseball park is filled with 5000 home-team...Ch. 12 - (a) What is the sound intensity level in a car...Ch. 12 - A trumpet player is tuning his instrument by...Ch. 12 - Two tuning forks are producing sounds of...Ch. 12 - Two guitarists attempt to play the same note of...Ch. 12 - Tuning a violin. A violinist is tuning her...Ch. 12 - A railroad train is traveling at 25.0 m/s in still...Ch. 12 - Two train whistles, A and B, each have a frequency...Ch. 12 - On the planet Arrakis, a male ornithoid is flying...Ch. 12 - You are driving down the road at 15.6 m/s (35 mph)...Ch. 12 - A railroad train is traveling at 30.0 m/s in still...Ch. 12 - The siren of a fire engine that is driving...Ch. 12 - A stationary police car emits a sound of frequency...Ch. 12 - A container ship is traveling westward at a speed...Ch. 12 - While sitting in your car by the side of a country...Ch. 12 - Moving source vs. moving listener. (a) A sound...Ch. 12 - How fast (as a percentage of light speed) would a...Ch. 12 - One end of a 14.0-m-long wire having a total mass...Ch. 12 - Ultrasound in medicine. A 2.00 MHz sound wave...Ch. 12 - A very noisy chain saw operated by a tree surgeon...Ch. 12 - Tuning a cello. A cellist tunes the C-string of...Ch. 12 - A bat flies toward a wall, emitting a steady sound...Ch. 12 - The sound source of a ships sonar system operates...Ch. 12 - The range of human hearing. A young person with...Ch. 12 - A person leaning over a 125-m-deep well...Ch. 12 - Prob. 68GPCh. 12 - A small musical toy produces a steady tone at 1000...Ch. 12 - A turntable 1.50 m in diameter rotates at 75 rpm....Ch. 12 - Musical scale. The frequency ratio of a semitone...Ch. 12 - BIO Waves on vocal cords. In the larynx, sound is...Ch. 12 - BIO Waves on vocal cords. In the larynx, sound is...Ch. 12 - BIO Waves on vocal cords. In the larynx, sound is...Ch. 12 - If the deepest structure you wish to image is 10.0...Ch. 12 - After a beam passes through 10 cm of tissue, what...Ch. 12 - Because the speed of ultrasound in bone is about...Ch. 12 - BIO Waves on vocal cords. In the larynx, sound is...Ch. 12 - For cranial ultrasound, why is it advantageous to...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A sound wave in air has a pressure amplitude equal to 4.00 103 Pa. Calculate the displacement amplitude of the wave at a frequency of 10.0 kHz.arrow_forwardSome studies suggest that the upper frequency limit of hearing is determined by the diameter of the eardrum. The wavelength of the sound wave and the diameter of the eardrum are approximately equal at this upper limit. If the relationship holds exactly, what is the diameter of the eardrum of a person capable of hearing 20 000 Hz? (Assume a body temperature of 37.0C.)arrow_forwardAt t = 0, a transverse pulse in a wire is described by the function y=6.00x2+3.00 where xand y are in meters. If the pulse is traveling in the positive x direction with a speed of 4.50 m/s, write the function y(x, t) that describes this pulse.arrow_forward
- A flute has a length of 58.0 cm. If the speed of sound in air is 343 m/s, what is the fundamental frequency of the flute, assuming it is a tube closed at one end and open at the other? (a) 148 Hz (b) 296 Hz (c) 444 Hz (d) 591 Hz (e) none of those answersarrow_forwardA particular open organ pipe has a fundamental frequencyof 220 Hz (known to musicians as A3 or “A below middle C”) when thespeed of sound waves in air is 344 m/s. (a) What is the length of this pipe?(b) The third harmonic of this pipe has the same frequency as the fundamentalfrequency of a stopped pipe. What is the length of this stopped pipe?arrow_forwardA sound wave in air at 20°C has a frequency of 320 Hz anda displacement amplitude of 5.00 * 10-3 mm. For this sound wavecalculate the (a) pressure amplitude (in Pa); (b) intensity (in W/m2);(c) sound intensity level (in decibels).arrow_forward
- On a day when the speed of sound in the air is 345 m/s, the fundamental frequency of an open-ended organ pipe is 690 Hz. If the second harmonic of this pipe has the same wavelength as the second overtone (third harmonic) of a closed- end pipe, what is the length of each pipe?arrow_forwardThe eardrum, which transmits sound vibrations to the sensory organs of the inner ear, lies at the end of the ear canal. For adults, the ear canal is about 2.6 cm in length. Frequency standing waves that can occur in the ear canal that are within the range of human hearing. Assume the speed of sound in the air of the ear canal to be 334 m/s. Write your answer with 3 sig fig. What is the lowest natural frequency for standing wave to be heard by humain?_____Hz What is the third lowest natural frequency for standing wave to be heard by humain?____Hz What is the second lowest natural frequency for standing wave to be heard by humain?_____Hzarrow_forwardOne of the strings on a musical instrument is 0.500 m in length and has linear mass density 1.17 * 10-3 kg/m. The second harmonic on this string has frequency 512 Hz. (a) What is the tension in the string? (b) The speed of sound in air at 20°C is 344 m/s. If the string is vibrating at its fundamental frequency, what is the wavelength of the sound wave that the string produces in air?arrow_forward
- the fundamental frequency of a system is 375hz. if the system is a cylindrical pipe with one end open and one closed end, give the lowest frequency a standing wave can occur (excluding the fundamental).arrow_forwardStanding waves are produced on a string that is held fixed at both ends. The tension in the string is kept constant. (a) For the second overtone standing wave the node-to-node distance is 8.00 cm. What is the length of the string? (b) What is the node-to-node distance for the fourth harmonic standing wave?arrow_forwardThe first three natural frequencies of an organ pipe are 126 Hz, 378 Hz, and 630 Hz. a) Is the pipe an open or closed one? b) Taking the speed of sound in the air to be 340 m/s, find the length of the pipe.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning