General Chemistry: Atoms First
2nd Edition
ISBN: 9780321809261
Author: John E. McMurry, Robert C. Fay
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Question
Chapter 12, Problem 12.89SP
(a)
Interpretation Introduction
Interpretation:
The chemical equation for the given overall reaction has to be given.
(b)
Interpretation Introduction
Interpretation:
The intermediate of the given reaction has to be identified.
(c)
Interpretation Introduction
Interpretation:
The molecularity of the given each elementary reaction has to be given.
Concept introduction:
Molecularity of reaction:
Unimolecular: A molecule (reactant) undergoes rearrangement itself to give one or more products is said to be unimolecuar reactions.
Bimolecular: Two molecules (reactants) undergo collisions to give one or more products is said to be bimolecular reactions.
Termolecular: Three molecules undergo collision to give one or more products is said to be termolecular reactions.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 12 Solutions
General Chemistry: Atoms First
Ch. 12.1 - The oxidation of iodide ion by arsenic acid,...Ch. 12.1 - Prob. 12.2PCh. 12.2 - Consider the last two reactions in Table 12.2....Ch. 12.3 - The oxidation of iodide ion by hydrogen peroxide...Ch. 12.3 - Prob. 12.5PCh. 12.3 - Prob. 12.6CPCh. 12.4 - Prob. 12.7PCh. 12.4 - Prob. 12.8PCh. 12.5 - Prob. 12.9PCh. 12.5 - Prob. 12.10CP
Ch. 12.6 - Prob. 12.11PCh. 12.6 - Prob. 12.12PCh. 12.6 - Prob. 12.13PCh. 12.6 - Prob. 12.14PCh. 12.7 - Prob. 12.15PCh. 12.9 - Prob. 12.16CPCh. 12.10 - Prob. 12.17PCh. 12.11 - Prob. 12.18PCh. 12.12 - Prob. 12.19PCh. 12.13 - Prob. 12.20PCh. 12.13 - Prob. 12.21PCh. 12.14 - Prob. 12.22CPCh. 12.15 - Prob. 12.23PCh. 12 - The following reaction is first order in A (red...Ch. 12 - Consider the first-order decomposition of A...Ch. 12 - Prob. 12.26CPCh. 12 - The following pictures represent the progress of...Ch. 12 - Prob. 12.28CPCh. 12 - Prob. 12.29CPCh. 12 - The relative rates of the reaction A + B AB in...Ch. 12 - Prob. 12.31CPCh. 12 - Prob. 12.32CPCh. 12 - Prob. 12.33CPCh. 12 - Prob. 12.34SPCh. 12 - Prob. 12.35SPCh. 12 - Prob. 12.36SPCh. 12 - Prob. 12.37SPCh. 12 - Prob. 12.38SPCh. 12 - Prob. 12.39SPCh. 12 - Prob. 12.40SPCh. 12 - The oxidation of 2-butanone (CH3COC2H5) by the...Ch. 12 - Prob. 12.42SPCh. 12 - The reaction 2 NO(g) + 2 H2(g) N2(g) + 2 H2O(g)...Ch. 12 - Bromomethane is converted to methanol in an...Ch. 12 - The oxidation of Br by BRO3, in acidic solution is...Ch. 12 - Prob. 12.46SPCh. 12 - Prob. 12.47SPCh. 12 - Prob. 12.48SPCh. 12 - Prob. 12.49SPCh. 12 - The initial rates listed in the following table...Ch. 12 - Prob. 12.51SPCh. 12 - Prob. 12.52SPCh. 12 - The rearrangement of methyl isonitrile (CH3NC) to...Ch. 12 - Prob. 12.54SPCh. 12 - What is the half-life (in hours) of the reaction...Ch. 12 - Prob. 12.56SPCh. 12 - Prob. 12.57SPCh. 12 - Prob. 12.58SPCh. 12 - What is the half-life (in days) of the reaction in...Ch. 12 - Prob. 12.60SPCh. 12 - Prob. 12.61SPCh. 12 - Prob. 12.62SPCh. 12 - Prob. 12.63SPCh. 12 - Prob. 12.64SPCh. 12 - Prob. 12.65SPCh. 12 - Prob. 12.66SPCh. 12 - Prob. 12.67SPCh. 12 - Prob. 12.68SPCh. 12 - Prob. 12.69SPCh. 12 - Prob. 12.70SPCh. 12 - Prob. 12.71SPCh. 12 - Prob. 12.72SPCh. 12 - Prob. 12.73SPCh. 12 - Prob. 12.74SPCh. 12 - Prob. 12.75SPCh. 12 - Prob. 12.76SPCh. 12 - Prob. 12.77SPCh. 12 - Prob. 12.78SPCh. 12 - Prob. 12.79SPCh. 12 - Rate constants for the reaction NO2(g) + CO(g) ...Ch. 12 - Prob. 12.81SPCh. 12 - Prob. 12.82SPCh. 12 - Prob. 12.83SPCh. 12 - Prob. 12.84SPCh. 12 - Prob. 12.85SPCh. 12 - Prob. 12.86SPCh. 12 - Prob. 12.87SPCh. 12 - Prob. 12.88SPCh. 12 - Prob. 12.89SPCh. 12 - Prob. 12.90SPCh. 12 - Prob. 12.91SPCh. 12 - Prob. 12.92SPCh. 12 - Prob. 12.93SPCh. 12 - The reaction 2 NO2(g) + F2(g) 2 NO2F(g) has a...Ch. 12 - Prob. 12.95SPCh. 12 - Prob. 12.96SPCh. 12 - Prob. 12.97SPCh. 12 - Prob. 12.98SPCh. 12 - Prob. 12.99SPCh. 12 - Prob. 12.100SPCh. 12 - Sulfur dioxide is oxidized to sulfur trioxide in...Ch. 12 - Consider the following mechanism for the...Ch. 12 - Prob. 12.103SPCh. 12 - Prob. 12.104CHPCh. 12 - Prob. 12.105CHPCh. 12 - Prob. 12.106CHPCh. 12 - Consider three reactions with different values of...Ch. 12 - Prob. 12.108CHPCh. 12 - Prob. 12.109CHPCh. 12 - Prob. 12.110CHPCh. 12 - When the temperature of a gas is raised by 10 C,...Ch. 12 - Prob. 12.112CHPCh. 12 - Prob. 12.113CHPCh. 12 - Prob. 12.114CHPCh. 12 - Prob. 12.115CHPCh. 12 - Prob. 12.116CHPCh. 12 - Prob. 12.117CHPCh. 12 - Prob. 12.118CHPCh. 12 - Consider the following concentrationtime data for...Ch. 12 - Prob. 12.120CHPCh. 12 - Prob. 12.121CHPCh. 12 - Prob. 12.122CHPCh. 12 - Prob. 12.123CHPCh. 12 - Assume that you are studying the first-order...Ch. 12 - Prob. 12.125CHPCh. 12 - Prob. 12.126CHPCh. 12 - Prob. 12.127CHPCh. 12 - Prob. 12.128CHPCh. 12 - Use the following initial rate data to determine...Ch. 12 - Prob. 12.130CHPCh. 12 - The following experimental data were obtained in a...Ch. 12 - Prob. 12.132CHPCh. 12 - Prob. 12.133CHPCh. 12 - Prob. 12.134CHPCh. 12 - Prob. 12.135CHPCh. 12 - Polytetrafluoroethylene (Teflon) decomposes when...Ch. 12 - Values of Ea = 6.3 kJ/mol and A = 6.0 108 M1 s1...Ch. 12 - Prob. 12.138MPCh. 12 - The rate constant for the decomposition of gaseous...Ch. 12 - Prob. 12.140MPCh. 12 - Prob. 12.141MPCh. 12 - Prob. 12.142MPCh. 12 - Prob. 12.143MP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Write a rate law for NO3(g) + O2(g) NO2(g) + O3(g) if measurements show the reaction is first order in nitrogen trioxide and second order in oxygen.arrow_forwardDefine stability from both a kinetic and thermodynamic perspective. Give examples to show the differences in these concepts.arrow_forwardOne mechanism for the destruction of ozone in the upper atmosphere is a. Which species is a catalyst? b. Which species is an intermediate? c. Ea for the uncatalyzed reaction O3(g)+O(g)2O2(g) is 14.0 kJ. Ea. for the same reaction when catalyzed is 11.9 kJ. What is the ratio of the rate constant for the catalyzed reaction to that for the uncatalyzed reaction at 25C? Assume that the frequency factor A is the same for each reaction.arrow_forward
- The following equation represents a reversible decomposition: CaCO3(s)CaO(s)+CO2(g) Under what conditions will decomposition in a closed container proceed to completion so that no CaCO3 remains?arrow_forwardAssuming that the mechanism for the hydrogenation of C2H4 given in Section 11-7 is correct, would you predict that the product of the reaction of C2H4. with D2 would be CH2DCH2D or CHD2CH3? How could the reaction of C2H4 with D2 be used to confirm the mechanism for the hydrogenation of C2H4 given in Section 11-7?arrow_forwardCan a reaction mechanism ever be proven correct? Can it be proven incorrect?arrow_forward
- The following rate constants were obtained in an experiment in which the decomposition of gaseous N2O; was studied as a function of temperature. The products were NO, and NO,. Temperature (K) 3.5 x 10_i 298 2.2 x 10"4 308 6.8 X IO-4 318 3.1 x 10 1 328 Determine Etfor this reaction in kj/mol.arrow_forwardOzone, O3, in the Earths upper atmosphere decomposes according to the equation 2 O3(g) 3 O2(g) The mechanism of the reaction is thought to proceed through an initial fast, reversible step followed by a slow, second step. Step 1: Fast, reversible O3(g) O2(g) + O(g) Step 2: Slow O3(g) + O(g) 2 O2(g) (a) Which of the steps is rate-determining? (b) Write the rate equation for the rate-determining steparrow_forward11.44 A possible reaction for the degradation of the pesticide DDT to a less harmful compound was simulated in the laboratory. The reaction was found to be first order, with k = 4.0 X 10_H s"' at 25°C. What is the half-life for the degradation of DDT in this experiment, in years?arrow_forward
- The reaction NO(g) + O,(g) — NO,(g) + 0(g) plays a role in the formation of nitrogen dioxide in automobile engines. Suppose that a series of experiments measured the rate of this reaction at 500 K and produced the following data; [NO] (mol L ’) [OJ (mol L 1) Rate = -A[NO]/Af (mol L_1 s-1) 0.002 0.005 8.0 X 10"'7 0.002 0.010 1.6 X 10-'6 0.006 0.005 2.4 X IO-'6 Derive a rate law for the reaction and determine the value of the rate constant.arrow_forwardSilicon forms a series of compounds analogous to the al-kanes and having the general formula SinH2n+2. The first of these compounds is silane, SiH4, which is used in the electronics industry to produce thin ultrapure silicon films. SiH4(g) is somewhat difficult to work with because it is py-ropboric at room temperature—meaning that it bursts into flame spontaneously when exposed to air. (a) Write an equation for the combustion of SiH4(g). (The reaction is analogous to hydrocarbon combustion, and SiO2 is a solid under standard conditions. Assume the water produced will be a gas.) (b) Use the data from Appendix E to calculate ? for this reaction. (c) Calculate G and show that the reaction is spontaneous at 25°C. (d) Compare G for this reaction to the combustion of methane. (See the previous problem.) Are the reactions in these two exercises enthalpy or entropy driven? Explain.arrow_forwardIn Chapter 3, we discussed the conversion of biomass into biofuels. One important area of research associated with biofuels is the identification and development of suitable catalysts to increase the rate at which fuels can be produced. Do a web search to find an article describing biofuel catalysts. Then, write one or two sentences describing the reactions being catalyzed, and identify the catalyst as homogeneous or heterogeneous.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Kinetics: Initial Rates and Integrated Rate Laws; Author: Professor Dave Explains;https://www.youtube.com/watch?v=wYqQCojggyM;License: Standard YouTube License, CC-BY