Concept explainers
(a)
Interpretation:
The simple binary ionic compound formed when the pair of element reacts with each other is to be stated.
Concept Introduction:
The distribution of the electrons that exists in the atomic orbital of an atom is collectively known as electron configuration. The description of every electron that is moving freely in an orbital is given by the electron configuration of that atom.
Atoms lose or gain electrons to become stable by attaining nearest noble gas configuration. While doing so, they are converted to their respective ions. The positive ion and the negative ion combine to form their corresponding salt.
Answer to Problem 104AP
The simple binary ionic compound formed when the pair of element reacts with each other is
Explanation of Solution
The electron configuration of sodium with
The electron configuration of
Sodium loses
Selenium gains
The formation of salt is given below as:
After the formation of the ions, the interchange of the valency of the ions takes place and salt
(b)
Interpretation:
The simple binary ionic compound formed when the pair of element reacts with each other is to be stated.
Concept Introduction:
The distribution of the electrons that exists in the atomic orbital of an atom is collectively known as electron configuration. The description of every electron that is moving freely in an orbital is given by the electron configuration of that atom.
Atoms lose or gain electrons to become stable by attaining nearest noble gas configuration. While doing so, they are converted to their respective ions. The positive ion and the negative ion combine to form their corresponding salt.
Answer to Problem 104AP
The simple binary ionic compound formed when the pair of element reacts with each other is
Explanation of Solution
The electron configuration of rubidium with
The electron configuration of fluorine with
Rubidium loses
Fluorine gains
The formation of salt is given below as:
After the formation of the ions, the interchange of the valency of the ions takes place and salt
(c)
Interpretation:
The simple binary ionic compound formed when the pair of element reacts with each other is to be stated.
Concept Introduction:
The distribution of the electrons that exists in the atomic orbital of an atom is collectively known as electron configuration. The description of every electron that is moving freely in an orbital is given by the electron configuration of that atom.
Atoms lose or gain electrons to become stable by attaining nearest noble gas configuration. While doing so, they are converted to their respective ions. The positive ion and the negative ion combine to form their corresponding salt.
Answer to Problem 104AP
The simple binary ionic compound formed when the pair of element reacts with each other is
Explanation of Solution
The electron configuration of potassium with
The electron configuration of tellurium with
Potassium loses
Tellurium gains
The formation of salt is given below as:
After the formation of the ions, the interchange of the valency of the ions takes place and salt
(d)
Interpretation:
The simple binary ionic compound formed when the pair of element reacts with each other is to be stated.
Concept Introduction:
The distribution of the electrons that exists in the atomic orbital of an atom is collectively known as electron configuration. The description of every electron that is moving freely in an orbital is given by the electron configuration of that atom.
Atoms lose or gain electrons to become stable by attaining nearest noble gas configuration. While doing so, they are converted to their respective ions. The positive ion and the negative ion combine to form their corresponding salt.
Answer to Problem 104AP
The simple binary ionic compound formed when the pair of element reacts with each other is
Explanation of Solution
The electron configuration of barium with
The electron configuration of
Barium loses
Selenium gains
The formation of salt is given below as:
After the formation of the ions, the interchange of the valency of the ions takes place and salt
(e)
Interpretation:
The simple binary ionic compound formed when the pair of element reacts with each other is to be stated.
Concept Introduction:
The distribution of the electrons that exists in the atomic orbital of an atom is collectively known as electron configuration. The description of every electron that is moving freely in an orbital is given by the electron configuration of that atom.
Atoms lose or gain electrons to become stable by attaining nearest noble gas configuration. While doing so, they are converted to their respective ions. The positive ion and the negative ion combine to form their corresponding salt.
Answer to Problem 104AP
The simple binary ionic compound formed when the pair of element reacts with each other is
Explanation of Solution
The electron configuration of potassium with
The electron configuration of astatine with
Potassium loses
Astatine gains
The formation of salt is given below as:
After the formation of the ions, the interchange of the valency of the ions takes place and salt
(f)
Interpretation:
The simple binary ionic compound formed when the pair of element reacts with each other is to be stated.
Concept Introduction:
The distribution of the electrons that exists in the atomic orbital of an atom is collectively known as electron configuration. The description of every electron that is moving freely in an orbital is given by the electron configuration of that atom.
Atoms lose or gain electrons to become stable by attaining nearest noble gas configuration. While doing so, they are converted to their respective ions. The positive ion and the negative ion combine to form their corresponding salt.
Answer to Problem 104AP
The simple binary ionic compound formed when the pair of element reacts with each other is
Explanation of Solution
The electron configuration of francium with
The electron configuration of chlorine with
Francium loses
Chlorine gains
The formation of salt is given below as:
After the formation of the ions, the interchange of the valency of the ions takes place and salt
Want to see more full solutions like this?
Chapter 12 Solutions
Introductory Chemistry: A Foundation
- Unshared, or lone, electron pairs play an important role in determining the chemical and physical properties of organic compounds. Thus, it is important to know which atoms carry unshared pairs. Use the structural formulas below to determine the number of unshared pairs at each designated atom. Be sure your answers are consistent with the formal charges on the formulas. CH. H₂ fo H2 H The number of unshared pairs at atom a is The number of unshared pairs at atom b is The number of unshared pairs at atom c is HC HC HC CH The number of unshared pairs at atom a is The number of unshared pairs at atom b is The number of unshared pairs at atom c isarrow_forwardDraw curved arrows for the following reaction step. Arrow-pushing Instructions CH3 CH3 H H-O-H +/ H3C-C+ H3C-C-0: CH3 CH3 Harrow_forward1:14 PM Fri 20 Dec 67% Grade 7 CBE 03/12/2024 (OOW_7D 2024-25 Ms Sunita Harikesh) Activity Hi, Nimish. When you submit this form, the owner will see your name and email address. Teams Assignments * Required Camera Calendar Files ... More Skill: Advanced or complex data representation or interpretation. Vidya lit a candle and covered it with a glass. The candle burned for some time and then went off. She wanted to check whether the length of the candle would affect the time for which it burns. She performed the experiment again after changing something. Which of these would be the correct experimental setup for her to use? * (1 Point) She wanted to check whether the length of the candle would affect the time for which it burns. She performed the experiment again after changing something. Which of these would be the correct experimental setup for her to use? A Longer candle; No glass C B Longer candle; Longer glass D D B Longer candle; Same glass Same candle; Longer glassarrow_forward
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning