Tutorials in Introductory Physics
Tutorials in Introductory Physics
1st Edition
ISBN: 9780130970695
Author: Peter S. Shaffer, Lillian C. McDermott
Publisher: Addison Wesley
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 11.4, Problem 1aT

Red light from a distant point source is incident on a mask with ten identical, evenly-spaced, very narrow slits. (See diagrams at right and below.)
Chapter 11.4, Problem 1aT, Red light from a distant point source is incident on a mask with ten identical, evenly-spaced, very , example  1
On the magnified view below, label the line segment of length that represent how much farther light must travel from slit 1 than from slit 2 reach point X on a distant screen.

What is the smallest value of Δ D adj that corresponds to a minimum for 10 slits? (Transparencies of since curves are available in case you would like to review these concepts.)

The minimum that corresponds to this smallest value of Δ D adj is called the first minimum.
Chapter 11.4, Problem 1aT, Red light from a distant point source is incident on a mask with ten identical, evenly-spaced, very , example  2

Blurred answer
Students have asked these similar questions
Suppose that the simulated light source was polychromatic, with both a red and a yellow component, as shown on the right. How easy would it be to identify the positions (yP ) of the separate red and yellow interference maxima? Can you think of a change in the appearance of the interference pattern of each individual wavelength that, were it to happen, would help to distinguish the red from the yellow peaks?
A thin beam of white light is directed at a flat sheet of silicate flint glass at an angle of 20° to the surface of the sheet. Due to dispersion in the glass, the beam is spread out in a spectrum as shown in the figure. The refractive index of silicate flint glass versus wavelength is graphed in figure to the right. (a) The rays (A and B) shown in the figure correspond to the extreme wavelengths. Which corresponds to red and which to violet? Explain your reasoning. (b) For what thickness of the glass sheet will the spectrum be 1.0 mm wide, as shown (see Problem 7)? Hint: you must first solve Problem 7 first before doing Problem 8). Answer: 93.5 mm
If light with a wavelength of 480 nm is used in a two-slit experiment with a barrier with slits that are 0.05 mm apart that is 1.6 m from the projection screen. What is the distance from the center of the first and third dark fringes? Show your work.

Chapter 11 Solutions

Tutorials in Introductory Physics

Ch. 11.2 - Prob. 2aTCh. 11.2 - Obtain an enlargement of the diagram at right that...Ch. 11.2 - Suppose that the width of one of the slits were...Ch. 11.2 - Red light from a distant point source is incident...Ch. 11.2 - Compare the situation in part II (in which a...Ch. 11.2 - For each of the lettered points, determine D (in...Ch. 11.2 - Suppose that one of the slits were covered. At...Ch. 11.2 - The pattern produced by red light passing through...Ch. 11.2 - Consider point B, the first maximum to the left of...Ch. 11.3 - Red light from a distant point source is incident...Ch. 11.3 - In a previous homework, you found an expression...Ch. 11.3 - Suppose that the screen were semicircular, as...Ch. 11.3 - Consider a point M on the distant screen where...Ch. 11.3 - Consider a point N on the screen where there is a...Ch. 11.3 - Obtain a set of transparencies of sinusoidal...Ch. 11.3 - Suppose that coherent red light were incident on a...Ch. 11.3 - Generalize your results from the 2-slit, 3-slit,...Ch. 11.3 - Coherent red light is incident on a mask with two...Ch. 11.3 - Prob. 3dTCh. 11.4 - Red light from a distant point source is incident...Ch. 11.4 - Suppose that point X marks the location of the...Ch. 11.4 - Suppose that only slit 1 is uncovered, and all...Ch. 11.4 - Show how you could group all ten slits into five...Ch. 11.4 - Suppose that the number of slits is doubled and...Ch. 11.4 - If we continued to add slits in this way (i.e.,...Ch. 11.4 - How is this pattern different from what you would...Ch. 11.4 - Consider the following dialogue: Student 1: "l...Ch. 11.4 - The photograph at right shows the diffraction...Ch. 11.4 - The photograph at right shows the diffraction...Ch. 11.4 - Describe what you would see on the screen if the...Ch. 11.4 - If a diffraction pattern has several minima (like...Ch. 11.4 - In part A, you drew a diagram that showed how find...Ch. 11.4 - Use the model that we have developed to write an...Ch. 11.5 - The minima that occur in the case of a single slit...Ch. 11.5 - Consider the following dispute between two physics...Ch. 11.5 - A second slit, identical in size to the first, is...Ch. 11.5 - Both slits are now uncovered. For what angles will...Ch. 11.5 - Suppose that the width of both slit, a, were...Ch. 11.5 - Suppose instead that the distance between the...Ch. 11.5 - The four graphs from part C that show relative...Ch. 11.5 - Consider the relative intensity graph shown at...Ch. 11.5 - Consider the following comment made by a student:...Ch. 11.5 - You may have already noticed that the maxima are...Ch. 11.6 - Prob. 1TCh. 11.6 - Prob. 2aTCh. 11.6 - When comparing two materials of different indices...Ch. 11.6 - Consider light incident on a thin soap film, as...Ch. 11.6 - Light of frequency f=7.51014Hz is incident on the...Ch. 11.6 - Suppose that an observer were located on the left...Ch. 11.6 - Observer A is looking at the part of the film that...Ch. 11.6 - Observer B is looking at the part of the film that...Ch. 11.6 - Observer C is looking at the thinnest part of the...Ch. 11.6 - Describe the appearance of the film as a whole.Ch. 11.6 - What are the three smallest film thickness for...Ch. 11.6 - The thickness of the film is 1650 nm at the bottom...Ch. 11.7 - Look at the room lights through one of the...Ch. 11.7 - Hold a second polarizing filter in front of the...Ch. 11.7 - Do the room lights produce polarized light?...Ch. 11.7 - Suppose that you had two marked polarizers (i.e.,...Ch. 11.7 - Suppose that you had a polarizer with its...Ch. 11.7 - Prob. 2dTCh. 11.7 - An observer is looking at a light source through...Ch. 11.7 - Consider a beam of unpolarized light that is...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY