Vector Mechanics For Engineers
12th Edition
ISBN: 9781259977305
Author: BEER, Ferdinand P. (ferdinand Pierre), Johnston, E. Russell (elwood Russell), Cornwell, Phillip J., SELF, Brian P.
Publisher: Mcgraw-hill Education,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11.3, Problem 11.62P
A particle moves in a straight line with a constant acceleration of -4 ft/s2 for 6 s, zero acceleration for the next 4 s, and a constant acceleration of +4 ft/s2 for the next 4 s. Knowing that the particle starts from the origin with
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A particle moves in a straight line with a constant acceleration of -4 ft/s2 for 6 s, zero acceleration for the next 4 s, and a constant acceleration of +4 ft/s2 for the next 4 s. Knowing that the particle starts from the origin and that its velocity is -8 ft/s during the zero acceleration time interval, (a) construct the v-t and x-t curves for 0 ≤ t≤ 14 s, (b ) determine the position and the velocity of the particle and the total distance traveled when t= 14 s.
The acceleration of a particle is defined by the relation a=-k/x. It has been experimentally determined that v= 15 ft/s when x= 0.6 ft and that v= 9 ft/s when x= 1.2 ft. Determine (a) the velocity of the particle when x= 1.5 ft, (b) the position of the particle at which its velocity is zero.
A particle is moving with an acceleration of (2t)i + (10)j (m/s2). How many initial conditions must be specified in order to obtain a time-dependent expression for the particle position?
A particle is moving with an acceleration of (2t)i + (10)j (m/s2). How many initial conditions must be specified in order to obtain a time-dependent expression for the particle position?
Two: initial velocity and initial position
One: initial velocity
One: initial position
None: initial conditions are not needed to create a time-dependent expression for particle position.
Chapter 11 Solutions
Vector Mechanics For Engineers
Ch. 11.1 - A bus travels the 100 miles between A and B at 50...Ch. 11.1 - Two cars A and B race each other down a straight...Ch. 11.1 - A snowboarder starts from rest at the top of a...Ch. 11.1 - The motion of a particle is defined by the...Ch. 11.1 - The vertical motion of mass A is defined by the...Ch. 11.1 - A loaded railroad car is rolling at a constant...Ch. 11.1 - A group of hikers uses a GPS while doing a 40-mile...Ch. 11.1 - The motion of a particle is defined by the...Ch. 11.1 - A girl operates a radio-controlled model ear in a...Ch. 11.1 - The motion of a particle is defined by the...
Ch. 11.1 - The brakes of a car are applied, causing it to...Ch. 11.1 - The acceleration of a particle is defined by the...Ch. 11.1 - The acceleration of a particle is defined by the...Ch. 11.1 - Many car companies are performing research on...Ch. 11.1 - A Scotch yoke is a mechanism that transforms the...Ch. 11.1 - For the Scotch yoke mechanism shown, the...Ch. 11.1 - A piece of electronic equipment that is surrounded...Ch. 11.1 - A projectile enters a resisting medium at x=0 with...Ch. 11.1 - Point A oscillates with an acceleration...Ch. 11.1 - A brass (nonmagnetic) block A and a steel magnet B...Ch. 11.1 - Based on experimental observations, the...Ch. 11.1 - A spring AB is attached to a support at A and to a...Ch. 11.1 - The acceleration of a particle is defined by the...Ch. 11.1 - Starting from x=0 with no initial velocity, a...Ch. 11.1 - A ball is dropped from a boat so that it strikes...Ch. 11.1 - The acceleration of a particle is defined by the...Ch. 11.1 - The acceleration of a particle is defined by the...Ch. 11.1 - A human-powered vehicle (HPV) team wants to model...Ch. 11.1 - Experimental data indicate that in a region...Ch. 11.1 - Based on observations, the speed of a jogger can...Ch. 11.1 - The acceleration due to gravity at an altitude y...Ch. 11.1 - The acceleration due to gravity of a particle...Ch. 11.1 - The velocity of a particle is v=v0[1sin(t/T)] ....Ch. 11.1 - An eccentric circular cam, which serves a similar...Ch. 11.2 - An airplane begins its take-off run at A with zero...Ch. 11.2 - A minivan is tested for acceleration and braking....Ch. 11.2 - Steep safety ramps are built beside mountain...Ch. 11.2 - A group of students launches a model rocket in the...Ch. 11.2 - A small package is released from rest at A and...Ch. 11.2 - A sprinter in a 100-m race accelerates uniformly...Ch. 11.2 - Automobile A starts from O and accelerates at the...Ch. 11.2 - In a boat race, boat A is leading boat B by 50 m...Ch. 11.2 - As relay runner A enters the 65-ft-long exchange...Ch. 11.2 - Automobiles A and B are traveling in adjacent...Ch. 11.2 - Two automobiles A and B are approaching each other...Ch. 11.2 - An elevator is moving upward at a constant speed...Ch. 11.2 - Two rockets are launched at a fireworks display....Ch. 11.2 - Car A is parked along the northbound lane of a...Ch. 11.2 - The elevator E shown in the figure moves downward...Ch. 11.2 - The elevator E shown starts from rest and moves...Ch. 11.2 - An athlete pulls handle A to the left with a...Ch. 11.2 - An athlete pulls handle A to the left with a...Ch. 11.2 - In the position shown, collar B moves to the left...Ch. 11.2 - Collar A starts from rest and moves to the right...Ch. 11.2 - A farmer lifts his hay bales into the top loft of...Ch. 11.2 - The motor M reels in the cable at a constant rate...Ch. 11.2 - Collar A starts from rest at t=0 and moves upward...Ch. 11.2 - Collars A and B start from rest, and collar A...Ch. 11.2 - Block B starts from rest, block A moves with a...Ch. 11.2 - Block B moves downward with a constant velocity of...Ch. 11.2 - The system shown starts from rest, and each...Ch. 11.2 - The system shown starts from rest, and the length...Ch. 11.3 - A particle moves in a straight line with a...Ch. 11.3 - A particle moves in a straight line with a...Ch. 11.3 - A particle moves in a straight line with the...Ch. 11.3 - Prob. 11.64PCh. 11.3 - Prob. 11.65PCh. 11.3 - A parachutist is in free fall at a rate of 200...Ch. 11.3 - A commuter train traveling at 40 mi/h is 3 mi from...Ch. 11.3 - Prob. 11.68PCh. 11.3 - In a water-tank test involving the launching of a...Ch. 11.3 - Prob. 11.70PCh. 11.3 - Prob. 11.71PCh. 11.3 - A car and a truck are both traveling at the...Ch. 11.3 - Solve Prob. 11.72, assuming that the driver of the...Ch. 11.3 - Car A is traveling on a highway at a constant...Ch. 11.3 - An elevator starts from rest and moves upward,...Ch. 11.3 - Car A is traveling at 40 mi/h when it enters a 30...Ch. 11.3 - An accelerometer record for the motion of a given...Ch. 11.3 - Prob. 11.78PCh. 11.3 - An airport shuttle train travels between two...Ch. 11.3 - Prob. 11.80PCh. 11.3 - Prob. 11.81PCh. 11.3 - The acceleration record shown was obtained during...Ch. 11.3 - A training airplane has a velocity of 126 ft/s...Ch. 11.3 - Shown in the figure is a portion of the...Ch. 11.3 - An elevator starts from rest and rises 40 m to its...Ch. 11.3 - Prob. 11.86PCh. 11.3 - Prob. 11.87PCh. 11.3 - Prob. 11.88PCh. 11.4 - Two model rockets are fired simultaneously from a...Ch. 11.4 - Ball A is thrown straight up. Which of the...Ch. 11.4 - Ball A is thrown straight up with an initial speed...Ch. 11.4 - Two cars are approaching an intersection at...Ch. 11.4 - Blocks A and B are released from rest in the...Ch. 11.4 - A ball is thrown so that the motion is defined by...Ch. 11.4 - The motion of a vibrating particle is defined by...Ch. 11.4 - The motion of a particle is defined by the...Ch. 11.4 - The motion of a particle is defined by the...Ch. 11.4 - Engineers are examining how shock absorber designs...Ch. 11.4 - A girl operates a radio-controlled model car in a...Ch. 11.4 - The three-dimensional motion of a particle is...Ch. 11.4 - Prob. 11.96PCh. 11.4 - An airplane used to drop water on brushfires is...Ch. 11.4 - A ski jumper starts with a horizontal take-off...Ch. 11.4 - A baseball pitching machine "throws" baseballs...Ch. 11.4 - While delivering newspapers, a girl throws a...Ch. 11.4 - A pump is located near the edge of the horizontal...Ch. 11.4 - In slow pitch softball, the underhand pitch must...Ch. 11.4 - A volleyball player serves the ball with an...Ch. 11.4 - A golfer hits a golf ball with an initial velocity...Ch. 11.4 - A homeowner uses a snowblower to clear his...Ch. 11.4 - At halftime of a football game, souvenir balls are...Ch. 11.4 - A basketball player shoots when she is 16 ft from...Ch. 11.4 - A tennis player serves the ball at a height h=2.5...Ch. 11.4 - The nozzle at A discharges cooling water with an...Ch. 11.4 - While holding one of its ends, a worker lobs a...Ch. 11.4 - Prob. 11.111PCh. 11.4 - Prob. 11.112PCh. 11.4 - Prob. 11.113PCh. 11.4 - Prob. 11.114PCh. 11.4 - An oscillating garden sprinkler which discharges...Ch. 11.4 - A nozzle at A discharges water with an initial...Ch. 11.4 - The velocities of skiers A and B are as shown....Ch. 11.4 - The three blocks shown move with constant...Ch. 11.4 - Three seconds after automobile B passes through...Ch. 11.4 - Shore-based radar indicates that a ferry leaves...Ch. 11.4 - Airplanes A and B are flying at the same altitude...Ch. 11.4 - Prob. 11.122PCh. 11.4 - Knowing that at the instant shown block B has a...Ch. 11.4 - Knowing that at the instant shown block A has a...Ch. 11.4 - A boat is moving to the right with a constant...Ch. 11.4 - The assembly of rod A and wedge B starts from rest...Ch. 11.4 - Coal discharged from a dump truck with an initial...Ch. 11.4 - Conveyor belt A, which forms a 20° angle with the...Ch. 11.4 - During a rainstorm, the paths of the raindrops...Ch. 11.4 - Instruments in airplane A indicate that; with...Ch. 11.4 - When a small boat travels north at 15 km/h, a flag...Ch. 11.4 - As part of a department store display, a model...Ch. 11.5 - The Ferris wheel is rotating with a constant...Ch. 11.5 - A race car travels around the track shown at a...Ch. 11.5 - A child walks across merry go-round A with a...Ch. 11.5 - Determine the normal component of acceleration of...Ch. 11.5 - Prob. 11.134PCh. 11.5 - Prob. 11.135PCh. 11.5 - The diameter of the eye of a stationary hurricane...Ch. 11.5 - The peripheral speed of the tooth of a...Ch. 11.5 - A robot arm moves so that P travels in a circle...Ch. 11.5 - A monorail train starts from rest on a curve of...Ch. 11.5 - A motorist starts from rest at point A on a...Ch. 11.5 - Race car A is traveling on a straight portion of...Ch. 11.5 - At a given instant in an airplane race, airplane A...Ch. 11.5 - A race car enters the circular portion of a track...Ch. 11.5 - Pin A, which is attached to link AB, is...Ch. 11.5 - A golfer hits a golf ball from point A with an...Ch. 11.5 - Prob. 11.146PCh. 11.5 - Coal is discharged from the tailgate A of a dump...Ch. 11.5 - From measurements of a photograph, it has been...Ch. 11.5 - A child throws a ball from point A with an initial...Ch. 11.5 - Prob. 11.150PCh. 11.5 - Prob. 11.151PCh. 11.5 - Prob. 11.152PCh. 11.5 - Prob. 11.153PCh. 11.5 - Prob. 11.154PCh. 11.5 - Prob. 11.155PCh. 11.5 - Prob. 11.156PCh. 11.5 - Prob. 11.157PCh. 11.5 - A satellite will travel indefinitely in a circular...Ch. 11.5 - Prob. 11.159PCh. 11.5 - Satellites A and B are traveling in the same plane...Ch. 11.5 - Prob. 11.161PCh. 11.5 - Prob. 11.162PCh. 11.5 - During a parasailing ride, the boat is traveling...Ch. 11.5 - Prob. 11.164PCh. 11.5 - As rod OA rotates, pin P moves along the parabola...Ch. 11.5 - The pin at B is free to slide along the circular...Ch. 11.5 - To study the performance of a racecar a high-speed...Ch. 11.5 - After taking off, a helicopter climbs in a...Ch. 11.5 - At the bottom of a loop in the vertical plane, an...Ch. 11.5 - An airplane passes over a radar tracking station...Ch. 11.5 - Prob. 11.171PCh. 11.5 - Prob. 11.172PCh. 11.5 - Prob. 11.173PCh. 11.5 - Prob. 11.174PCh. 11.5 - Prob. 11.175PCh. 11.5 - Prob. 11.176PCh. 11.5 - Prob. 11.177PCh. 11.5 - Prob. 11.178PCh. 11.5 - Prob. 11.179PCh. 11.5 - Prob. 11.180PCh. 11.5 - Prob. 11.181PCh. 11 - Students are testing their new drone to see if it...Ch. 11 - A drag racing car starts from rest and moves the...Ch. 11 - A driver is traveling at a speed of 72 km/h in car...Ch. 11 - Prob. 11.185RPCh. 11 - Prob. 11.186RPCh. 11 - Prob. 11.187RPCh. 11 - Prob. 11.188RPCh. 11 - As the truck shown begins to back up with a...Ch. 11 - A velodrome is a specially designed track used in...Ch. 11 - Prob. 11.191RPCh. 11 - Prob. 11.192RPCh. 11 - A telemetry system is used to quantify kinematic...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The acceleration of a particle is defined by the equation a = -k/x. When x = 0.9 ft, v = 12 mph. When x = 1.8 ft, v = 11 kph. Determine (a) the velocity of the particle when x = 24 in, (b) the position of the particle when v = 0.arrow_forward1. The motion of a particle is defined by the relation x = -10² + 8t + 12, where x and t are expressed in meters and seconds, respectively. Determine the position, the velocity, and the acceleration of the particle when t = 1 s. 2. The vertical motion of mass A is defined by the relation x = 10 sin 2t +15cos2t +100, where x and t are expressed in mm and seconds, respectively. Determine (a) the position, velocity and acceleration of A when t = 1 s, (b) the maximum velocity and acceleration of A. A mall ale: amall boring Paperarrow_forwardA car is traveling with constant acceleration of ( a = 3 m/ sec?). The initial velocity of the car is ( v, = 20 m/ sec ) and ( x, = 0 ) . Determine : (a) The velocity of the car and the time taken to reach a distance of (x = 200 m /sec ). (b) What is the distance traveled when the velocity of the car becomes (v = 50 m / sec ). (c) The velocity of the car and the distance traveled at time (t = 20 sec ) .arrow_forward
- Two cars, A and B, started at the same time and location. Car A started from rest and moved with an acceleration a = 216.18 m/s . Car B also started from rest and moved with velocity v = 151.0914 m/s for 20 seconds after which it maintained its acceleration. It would take 30 seconds for Car A to reach their destination. Find if Car B caught up to Car A before it reached its destination. Assume rectilinear motion for both cars.arrow_forwardThe acceleration of a particle is directly proportional to the time t. At t = 0, the velocity of the particle is v = 12 in./s. Knowing that v = 10 in./s and that x = 15 in. when t = 1 s, determine the velocity and the position when t = 5 s.arrow_forwardThe rectangular coordinates of a particle which moves with curvilinear motion are given by x = 10.75t +2.25t² - 0.45t³ and y = 6.90 + 17.43t - 2.62t², where x and y are in millimeters and the time t is in seconds, beginning from t = 0. Determine the velocity v and acceleration a of the particle when t = 8 s. Also, determine the first time that the velocity of the particle makes an angle of 30° with the positive x-axis. Answers: V = a = 17.1 10.75 i + i 5.24 i+ i 17.43 j) mm/s j) mm/s²arrow_forward
- The acceleration of a particle is defined as a = 9 – 3t2. The particle starts at t 0 with v = 0 and x = 5 m. Determine: 1. The time when the velocity is again zero. 2. The position and velocity when t = 4 s Select one: A. t = 3; x(4) = 13 m and v(4) = -28 m/s %3D B. t = 1; x(4) = 13 m and v(4) = -28 m/s %3D !i! C. t = 0; x(4) = 13 m and v(4) = -28 m/s %3D %3D D. t = 3; x(4) = 13 m and v(4) = 28 m/s %3Darrow_forward1. The curvilinear motion of a particle is defined by v, = 50- 16t and y = 100 – 4t2 where vz is velocity in meters per second and t, time in seconds. It is also known that x = 0 when t = 0. Determine the velocity and acceleration of the particle when position y = O is reached.arrow_forwardThe rectangular coordinates of a particle which moves with curvilinear motion are given by x= 10.00t+1.00t² - 0.55+³ and y = 6.32 + 10.10t - 2.22t², where x and y are in millimeters and the time t is in seconds, beginning from t = 0. Determine the velocity v and acceleration a of the particle when t = 8 s. Also, determine the first time that the velocity of the particle makes an angle of 18° with the positive x-axis. Answers: V = a = (i t = tel it i i+i S j) mm/s j) mm/s²arrow_forward
- 1. UST Eco-Tiger vehicle climbed to a hill which is defined by the equation, x? = 625(16 – y). If the vehicle moves from point A with a speed of 20 m/s and starts to speed up at constant rate for exactly 4.72136 seconds until it reaches point B. Determine the magnitude of the x = 625(16 – y) B 15m vehicle's acceleration when the distance from A and B is 100 meters.arrow_forwardParticles B and A move along the parabolic and circular paths, respectively. Velocities of both particles are as shown, but B is accelerating at 4 m/s^2 while A is decelerating at 6 m/s^2. Determine the relative velocity and relative acceleration of B with respect to A. 62while A is decelerating at 6 m/s2. Determine the relative velocity and relativeacceleration of B with respect to A.arrow_forwardQ12. Two objects, A and B, are moving along their respective straight paths, and the directions of their motions are given in the image below. If at this instant, object A's speed is 3.2 m/s and it is increasing at 0.7 m/s², and object B's speed is 3.0 m/s and it is decreasing at 0.8 m/s², determine the magnitude of the relative acceleration of B with respective to A in m/s². Please pay attention: the numbers may change since they are randomized. Your answer must include 3 places after the decimal point, and proper Sl unit. 300- Answer: VBarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY