Calculus, Single Variable: Early Transcendentals (3rd Edition)
3rd Edition
ISBN: 9780134766850
Author: William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 11.2, Problem 65E
To determine
To find: The interval of convergence for
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
can you solve in it details?
write expansion of function as a power series
Calculus II
Chapter 11 Solutions
Calculus, Single Variable: Early Transcendentals (3rd Edition)
Ch. 11.1 - Verify that p3 satisfies p3(k)(a)=f(k)(a), for k =...Ch. 11.1 - Prob. 2QCCh. 11.1 - Prob. 3QCCh. 11.1 - Write out the next two Taylor polynomials p4 and...Ch. 11.1 - Prob. 5QCCh. 11.1 - Prob. 6QCCh. 11.1 - Suppose you use a second-order Taylor polynomial...Ch. 11.1 - Does the accuracy of an approximation given by a...Ch. 11.1 - The first three Taylor polynomials for f(x)=1+x...Ch. 11.1 - Prob. 4E
Ch. 11.1 - Suppose f(0) = 1, f(0) = 0, f"(0) = 2, and f(3)(0)...Ch. 11.1 - Prob. 6ECh. 11.1 - Prob. 7ECh. 11.1 - Suppose you want to estimate 26 using a...Ch. 11.1 - Linear and quadratic approximation a. Find the...Ch. 11.1 - Linear and quadratic approximation a. Find the...Ch. 11.1 - Linear and quadratic approximation a. Find the...Ch. 11.1 - Linear and quadratic approximation a. Find the...Ch. 11.1 - Linear and quadratic approximation a. Find the...Ch. 11.1 - Linear and quadratic approximation a. Find the...Ch. 11.1 - Linear and quadratic approximation a. Find the...Ch. 11.1 - Linear and quadratic approximation a. Find the...Ch. 11.1 - Find the Taylor polynomials p1, , p4 centered at a...Ch. 11.1 - Find the Taylor polynomials p1, , p5 centered at a...Ch. 11.1 - Find the Taylor polynomials p3, , p4 centered at a...Ch. 11.1 - Find the Taylor polynomials p4 and p5 centered at...Ch. 11.1 - Find the Taylor polynomials p1, p2, and p3...Ch. 11.1 - Find the Taylor polynomials p3 and p4 centered at...Ch. 11.1 - Find the Taylor polynomial p3 centered at a = e...Ch. 11.1 - Find the Taylor polynomial p2 centered at a = 8...Ch. 11.1 - Graphing Taylor polynomials a. Find the nth-order...Ch. 11.1 - Prob. 26ECh. 11.1 - Graphing Taylor polynomials a. Find the nth-order...Ch. 11.1 - Graphing Taylor polynomials a. Find the nth-order...Ch. 11.1 - Approximations with Taylor polynomials a. Use the...Ch. 11.1 - Approximations with Taylor polynomials a. Use the...Ch. 11.1 - Approximations with Taylor polynomials a. Use the...Ch. 11.1 - Approximations with Taylor polynomials a. Use the...Ch. 11.1 - Approximations with Taylor polynomials a....Ch. 11.1 - Prob. 34ECh. 11.1 - Approximations with Taylor polynomials a....Ch. 11.1 - Prob. 36ECh. 11.1 - Approximations with Taylor polynomials a....Ch. 11.1 - Prob. 38ECh. 11.1 - Prob. 39ECh. 11.1 - Prob. 40ECh. 11.1 - Prob. 41ECh. 11.1 - Prob. 42ECh. 11.1 - Prob. 43ECh. 11.1 - Prob. 44ECh. 11.1 - Prob. 45ECh. 11.1 - Prob. 46ECh. 11.1 - Prob. 47ECh. 11.1 - Estimating errors Use the remainder to find a...Ch. 11.1 - Estimating errors Use the remainder to find a...Ch. 11.1 - Prob. 50ECh. 11.1 - Prob. 51ECh. 11.1 - Prob. 52ECh. 11.1 - Prob. 53ECh. 11.1 - Prob. 54ECh. 11.1 - Prob. 55ECh. 11.1 - Prob. 56ECh. 11.1 - Prob. 57ECh. 11.1 - Prob. 58ECh. 11.1 - Prob. 59ECh. 11.1 - Prob. 60ECh. 11.1 - Prob. 61ECh. 11.1 - Prob. 62ECh. 11.1 - Prob. 63ECh. 11.1 - Prob. 64ECh. 11.1 - Prob. 65ECh. 11.1 - Prob. 66ECh. 11.1 - Prob. 67ECh. 11.1 - Prob. 68ECh. 11.1 - Prob. 69ECh. 11.1 - Prob. 70ECh. 11.1 - Prob. 71ECh. 11.1 - Prob. 72ECh. 11.1 - Prob. 73ECh. 11.1 - Prob. 74ECh. 11.1 - Prob. 75ECh. 11.1 - Prob. 76ECh. 11.1 - Prob. 77ECh. 11.1 - Prob. 78ECh. 11.1 - Prob. 79ECh. 11.1 - Best center point Suppose you wish to approximate...Ch. 11.1 - Prob. 81ECh. 11.1 - Prob. 82ECh. 11.1 - Prob. 83ECh. 11.1 - Prob. 84ECh. 11.1 - Prob. 85ECh. 11.1 - Prob. 86ECh. 11.1 - Prob. 87ECh. 11.1 - A different kind of approximation When...Ch. 11.2 - By substituting x = 0 in the power series for g,...Ch. 11.2 - What are the radius and interval of convergence of...Ch. 11.2 - Use the result of Example 4 to write a series...Ch. 11.2 - Verify that the power series in Example 5b does...Ch. 11.2 - Write the first four terms of a power series with...Ch. 11.2 - Prob. 2ECh. 11.2 - Prob. 3ECh. 11.2 - Is k=0x2ka power series? If so, find the center a...Ch. 11.2 - Prob. 5ECh. 11.2 - Prob. 6ECh. 11.2 - Prob. 7ECh. 11.2 - Prob. 8ECh. 11.2 - Radius and interval of convergence Determine the...Ch. 11.2 - Radius and interval of convergence Determine the...Ch. 11.2 - Radius and interval of convergence Determine the...Ch. 11.2 - Prob. 12ECh. 11.2 - Radius and interval of convergence Determine the...Ch. 11.2 - Radius and interval of convergence Determine the...Ch. 11.2 - Radius and interval of convergence Determine the...Ch. 11.2 - Radius and interval of convergence Determine the...Ch. 11.2 - Radius and interval of convergence Determine the...Ch. 11.2 - Radius and interval of convergence Determine the...Ch. 11.2 - Radius and interval of convergence Determine the...Ch. 11.2 - Radius and interval of convergence Determine the...Ch. 11.2 - Radius and interval of convergence Determine the...Ch. 11.2 - Radius and interval of convergence Determine the...Ch. 11.2 - Radius and interval of convergence Determine the...Ch. 11.2 - Radius and interval of convergence Determine the...Ch. 11.2 - Radius and interval of convergence Determine the...Ch. 11.2 - Radius and interval of convergence Determine the...Ch. 11.2 - Radius and interval of convergence Determine the...Ch. 11.2 - Radius and interval of convergence Determine the...Ch. 11.2 - Radius and interval of convergence Determine the...Ch. 11.2 - Prob. 30ECh. 11.2 - Radius and interval of convergence Determine the...Ch. 11.2 - Prob. 32ECh. 11.2 - Prob. 33ECh. 11.2 - Prob. 34ECh. 11.2 - Prob. 35ECh. 11.2 - Prob. 36ECh. 11.2 - Radius of convergence Find the radius of...Ch. 11.2 - Prob. 38ECh. 11.2 - Radius of convergence Find the radius of...Ch. 11.2 - Radius of convergence Find the radius of...Ch. 11.2 - Combining power series Use the geometric series...Ch. 11.2 - Combining power series Use the geometric series...Ch. 11.2 - Combining power series Use the geometric series...Ch. 11.2 - Combining power series Use the geometric series...Ch. 11.2 - Combining power series Use the geometric series...Ch. 11.2 - Combining power series Use the geometric series...Ch. 11.2 - Combining power series Use the power series...Ch. 11.2 - Prob. 48ECh. 11.2 - Prob. 49ECh. 11.2 - Prob. 50ECh. 11.2 - Differentiating and integrating power series Find...Ch. 11.2 - Differentiating and integrating power series Find...Ch. 11.2 - Differentiating and integrating power series Find...Ch. 11.2 - Differentiating and integrating power series Find...Ch. 11.2 - Differentiating and integrating power series Find...Ch. 11.2 - Differentiating and integrating power series Find...Ch. 11.2 - Functions to power series Find power series...Ch. 11.2 - Functions to power series Find power series...Ch. 11.2 - Functions to power series Find power series...Ch. 11.2 - Prob. 60ECh. 11.2 - Prob. 61ECh. 11.2 - Prob. 62ECh. 11.2 - Prob. 63ECh. 11.2 - Prob. 64ECh. 11.2 - Prob. 65ECh. 11.2 - Prob. 66ECh. 11.2 - Prob. 67ECh. 11.2 - Series to functions Find the function represented...Ch. 11.2 - Prob. 69ECh. 11.2 - Prob. 70ECh. 11.2 - Prob. 71ECh. 11.2 - Prob. 72ECh. 11.2 - Exponential function In Section 11.3, we show that...Ch. 11.2 - Prob. 74ECh. 11.2 - Prob. 75ECh. 11.2 - Prob. 76ECh. 11.2 - Prob. 77ECh. 11.2 - Prob. 78ECh. 11.3 - Verify that if the Taylor series for f centered at...Ch. 11.3 - Prob. 2QCCh. 11.3 - Verify that the series k=0(1)k+1(x5)k4k+1 from...Ch. 11.3 - Find the first three terms of the Maclaurin series...Ch. 11.3 - Evaluate the binomial coefficients (32) and (123).Ch. 11.3 - Prob. 6QCCh. 11.3 - Prob. 1ECh. 11.3 - Prob. 2ECh. 11.3 - Prob. 3ECh. 11.3 - Prob. 4ECh. 11.3 - Suppose you know the Maclaurin series for f and...Ch. 11.3 - For what values of p does the Taylor series for...Ch. 11.3 - In terms of the remainder, what does it mean for a...Ch. 11.3 - Find the Maclaurin series for sin(x) using the...Ch. 11.3 - Taylor series and interval of convergence a. Use...Ch. 11.3 - Taylor series and interval of convergence a. Use...Ch. 11.3 - Taylor series and interval of convergence a. Use...Ch. 11.3 - Prob. 12ECh. 11.3 - Taylor series and interval of convergence a. Use...Ch. 11.3 - Taylor series and interval of convergence a. Use...Ch. 11.3 - Taylor series and interval of convergence a. Use...Ch. 11.3 - Taylor series and interval of convergence a. Use...Ch. 11.3 - Taylor series and interval of convergence a. Use...Ch. 11.3 - Taylor series and interval of convergence a. Use...Ch. 11.3 - Taylor series and interval of convergence a. Use...Ch. 11.3 - Prob. 20ECh. 11.3 - Prob. 21ECh. 11.3 - Prob. 22ECh. 11.3 - Taylor series and interval of convergence a. Use...Ch. 11.3 - Taylor series and interval of convergence a. Use...Ch. 11.3 - Taylor series and interval of convergence a. Use...Ch. 11.3 - Taylor series and interval of convergence a. Use...Ch. 11.3 - Prob. 27ECh. 11.3 - Prob. 28ECh. 11.3 - Prob. 29ECh. 11.3 - Taylor series centered at a 0 a. Find the first...Ch. 11.3 - Taylor series centered at a 0 a. Find the first...Ch. 11.3 - Taylor series centered at a 0 a. Find the first...Ch. 11.3 - Prob. 33ECh. 11.3 - Taylor series a. Use the definition of a Taylor...Ch. 11.3 - Prob. 35ECh. 11.3 - Prob. 36ECh. 11.3 - Manipulating Taylor series Use the Taylor series...Ch. 11.3 - Prob. 38ECh. 11.3 - Prob. 39ECh. 11.3 - Prob. 40ECh. 11.3 - Manipulating Taylor series Use the Taylor series...Ch. 11.3 - Prob. 42ECh. 11.3 - Prob. 43ECh. 11.3 - Prob. 44ECh. 11.3 - Binomial series a. Find the first four nonzero...Ch. 11.3 - Prob. 46ECh. 11.3 - Prob. 47ECh. 11.3 - Prob. 48ECh. 11.3 - Binomial series a. Find the first four nonzero...Ch. 11.3 - Binomial series a. Find the first four nonzero...Ch. 11.3 - Working with binomial series Use properties of...Ch. 11.3 - Prob. 52ECh. 11.3 - Prob. 53ECh. 11.3 - Prob. 54ECh. 11.3 - Prob. 55ECh. 11.3 - Prob. 56ECh. 11.3 - Working with binomial series Use properties of...Ch. 11.3 - Working with binomial series Use properties of...Ch. 11.3 - Prob. 59ECh. 11.3 - Prob. 60ECh. 11.3 - Prob. 61ECh. 11.3 - Prob. 62ECh. 11.3 - Prob. 63ECh. 11.3 - Prob. 64ECh. 11.3 - Prob. 65ECh. 11.3 - Prob. 66ECh. 11.3 - Prob. 67ECh. 11.3 - Prob. 68ECh. 11.3 - Prob. 69ECh. 11.3 - Prob. 70ECh. 11.3 - Any method a. Use any analytical method to find...Ch. 11.3 - Prob. 72ECh. 11.3 - Prob. 73ECh. 11.3 - Prob. 74ECh. 11.3 - Prob. 75ECh. 11.3 - Prob. 76ECh. 11.3 - Prob. 78ECh. 11.3 - Prob. 80ECh. 11.3 - Prob. 81ECh. 11.3 - Prob. 82ECh. 11.3 - Prob. 83ECh. 11.3 - Prob. 84ECh. 11.3 - Prob. 85ECh. 11.3 - Composition of series Use composition of series to...Ch. 11.3 - Prob. 87ECh. 11.3 - Prob. 88ECh. 11.3 - Prob. 89ECh. 11.3 - Prob. 90ECh. 11.3 - Prob. 91ECh. 11.4 - Use the Taylor series sin x = x - x3/6+ to verify...Ch. 11.4 - Prob. 2QCCh. 11.4 - Prob. 3QCCh. 11.4 - Prob. 1ECh. 11.4 - Prob. 2ECh. 11.4 - Prob. 3ECh. 11.4 - Prob. 4ECh. 11.4 - Prob. 5ECh. 11.4 - Prob. 6ECh. 11.4 - Prob. 7ECh. 11.4 - Prob. 8ECh. 11.4 - Prob. 9ECh. 11.4 - Prob. 10ECh. 11.4 - Limits Evaluate the following limits using Taylor...Ch. 11.4 - Prob. 12ECh. 11.4 - Prob. 13ECh. 11.4 - Prob. 14ECh. 11.4 - Prob. 15ECh. 11.4 - Prob. 16ECh. 11.4 - Limits Evaluate the following limits using Taylor...Ch. 11.4 - Prob. 18ECh. 11.4 - Limits Evaluate the following limits using Taylor...Ch. 11.4 - Prob. 20ECh. 11.4 - Prob. 21ECh. 11.4 - Prob. 22ECh. 11.4 - Prob. 23ECh. 11.4 - Prob. 24ECh. 11.4 - Power series for derivatives a. Differentiate the...Ch. 11.4 - Power series for derivatives a. Differentiate the...Ch. 11.4 - Prob. 27ECh. 11.4 - Prob. 28ECh. 11.4 - Power series for derivatives a. Differentiate the...Ch. 11.4 - Prob. 30ECh. 11.4 - Power series for derivatives a. Differentiate the...Ch. 11.4 - Prob. 32ECh. 11.4 - Differential equations a. Find a power series for...Ch. 11.4 - Prob. 34ECh. 11.4 - Prob. 35ECh. 11.4 - Differential equations a. Find a power series for...Ch. 11.4 - Approximating definite integrals Use a Taylor...Ch. 11.4 - Approximating definite integrals Use a Taylor...Ch. 11.4 - Approximating definite integrals Use a Taylor...Ch. 11.4 - Prob. 40ECh. 11.4 - Approximating definite integrals Use a Taylor...Ch. 11.4 - Prob. 42ECh. 11.4 - Prob. 43ECh. 11.4 - Approximating definite integrals Use a Taylor...Ch. 11.4 - Approximating real numbers Use an appropriate...Ch. 11.4 - Approximating real numbers Use an appropriate...Ch. 11.4 - Prob. 47ECh. 11.4 - Approximating real numbers Use an appropriate...Ch. 11.4 - Approximating real numbers Use an appropriate...Ch. 11.4 - Prob. 50ECh. 11.4 - Prob. 51ECh. 11.4 - Prob. 52ECh. 11.4 - Evaluating an infinite series Write the Taylor...Ch. 11.4 - Prob. 54ECh. 11.4 - Representing functions by power series Identify...Ch. 11.4 - Prob. 56ECh. 11.4 - Prob. 57ECh. 11.4 - Prob. 58ECh. 11.4 - Prob. 59ECh. 11.4 - Prob. 60ECh. 11.4 - Prob. 61ECh. 11.4 - Prob. 62ECh. 11.4 - Prob. 63ECh. 11.4 - Prob. 64ECh. 11.4 - Prob. 65ECh. 11.4 - Limits with a parameter Use Taylor series to...Ch. 11.4 - Prob. 67ECh. 11.4 - Prob. 68ECh. 11.4 - A limit by Taylor series Use Taylor series to...Ch. 11.4 - Prob. 70ECh. 11.4 - Prob. 71ECh. 11.4 - Prob. 72ECh. 11.4 - Prob. 73ECh. 11.4 - Prob. 74ECh. 11.4 - Prob. 75ECh. 11.4 - Prob. 76ECh. 11.4 - Prob. 77ECh. 11.4 - Sine integral function The function...Ch. 11.4 - Fresnel integrals The theory of optics gives rise...Ch. 11.4 - Prob. 80ECh. 11.4 - Prob. 81ECh. 11.4 - Prob. 83ECh. 11.4 - Prob. 84ECh. 11 - Explain why or why not Determine whether the...Ch. 11 - Taylor polynomials Find the nth-order Taylor...Ch. 11 - Taylor polynomials Find the nth-order Taylor...Ch. 11 - Taylor polynomials Find the nth-order Taylor...Ch. 11 - Taylor polynomials Find the nth-order Taylor...Ch. 11 - Taylor polynomials Find the nth-order Taylor...Ch. 11 - Taylor polynomials Find the nth-order Taylor...Ch. 11 - Taylor polynomials Find the nth-order Taylor...Ch. 11 - Prob. 9RECh. 11 - Approximations a. Find the Taylor polynomials of...Ch. 11 - Prob. 11RECh. 11 - Prob. 12RECh. 11 - Approximations a. Find the Taylor polynomials of...Ch. 11 - Prob. 14RECh. 11 - Prob. 15RECh. 11 - Prob. 16RECh. 11 - Prob. 17RECh. 11 - Prob. 18RECh. 11 - Prob. 19RECh. 11 - Prob. 20RECh. 11 - Radius and interval of convergence Use the Ratio...Ch. 11 - Prob. 22RECh. 11 - Radius and interval of convergence Use the Ratio...Ch. 11 - Radius and interval of convergence Use the Ratio...Ch. 11 - Radius and interval of convergence Use the Ratio...Ch. 11 - Radius and interval of convergence Use the Ratio...Ch. 11 - Radius of convergence Find the radius of...Ch. 11 - Radius of convergence Find the radius of...Ch. 11 - Prob. 29RECh. 11 - Prob. 30RECh. 11 - Prob. 31RECh. 11 - Prob. 32RECh. 11 - Prob. 33RECh. 11 - Power series from the geometric series Use the...Ch. 11 - Prob. 35RECh. 11 - Taylor series Write out the first three nonzero...Ch. 11 - Prob. 37RECh. 11 - Taylor series Write out the first three nonzero...Ch. 11 - Taylor series Write out the first three nonzero...Ch. 11 - Prob. 40RECh. 11 - Taylor series Write out the first three nonzero...Ch. 11 - Prob. 42RECh. 11 - Prob. 43RECh. 11 - Prob. 44RECh. 11 - Prob. 45RECh. 11 - Prob. 46RECh. 11 - Convergence Write the remainder term Rn(x) for the...Ch. 11 - Convergence Write the remainder term Rn(x) for the...Ch. 11 - Limits by power series Use Taylor series to...Ch. 11 - Prob. 50RECh. 11 - Limits by power series Use Taylor series to...Ch. 11 - Prob. 52RECh. 11 - Prob. 53RECh. 11 - Prob. 54RECh. 11 - Prob. 55RECh. 11 - Prob. 56RECh. 11 - Definite integrals by power series Use a Taylor...Ch. 11 - Prob. 58RECh. 11 - Approximating real numbers Use an appropriate...Ch. 11 - Prob. 60RECh. 11 - Approximating real numbers Use an appropriate...Ch. 11 - Prob. 62RECh. 11 - Prob. 63RECh. 11 - Prob. 64RECh. 11 - Prob. 65RECh. 11 - Prob. 66RE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- 00 Give an example of divergent seriesan and b, such that (a, + b,) = 1. n=1 n=1 n=1arrow_forwardDetermine a power series representation and its interval of convergence of f(x) 1 4-x² given that f(x) = =arrow_forward(-1)"+1( n+1 (x-5)" 2. Consider the power series n=1 4n n What is the center ? What is the interval of convergencearrow_forward
- Can i have the answer for a,b,c with neat handwritingarrow_forward(-1)"-1 6. (a) Show that the series is convergent. n2 n=1 (-1)"-1 (b) Find the partial sum s, of the series Estimate the error in using s; as an n2 n=1 approximation to the sum of the series. (c) Find a value of n so that s, is within 0.001 of the sum.arrow_forwardhow do i solve the attached calculus question?arrow_forward
- Write a power series representing the function f(x) = : %3D 6-r f(a)= Σ Determine the interval of convergence of this series: (Give all intervals in interval notation.) Find a power series that represents f'(x) and determine its interval of convergence. f'(z) = E n=1 Interval of convergence: Find a power series that represents f f(2)dr and determine its interval of convergence. Sf(z)dr = C + Interval of convergence:arrow_forward7. Find a power series representation for the function and determine the interval of convergence. ƒ(x) = X 2x-1arrow_forwardTrue or falsearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning
Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning
Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON
Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman
Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning
Power Series; Author: Professor Dave Explains;https://www.youtube.com/watch?v=OxVBT83x8oc;License: Standard YouTube License, CC-BY
Power Series & Intervals of Convergence; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=XHoRBh4hQNU;License: Standard YouTube License, CC-BY