Calculus, Single Variable: Early Transcendentals (3rd Edition)
3rd Edition
ISBN: 9780134766850
Author: William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 11.1, Problem 14E
Linear and quadratic approximation
- a. Find the linear approximating polynomial for the following functions centered at the given point a.
- b. Find the quadratic approximating polynomial for the following functions centered at the given point a.
- c. Use the polynomials obtained in parts (a) and (b) to approximate the given quantity.
12. f(x) = cos x, a = π/4; approximate cos (0.24π).
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 11 Solutions
Calculus, Single Variable: Early Transcendentals (3rd Edition)
Ch. 11.1 - Verify that p3 satisfies p3(k)(a)=f(k)(a), for k =...Ch. 11.1 - Prob. 2QCCh. 11.1 - Prob. 3QCCh. 11.1 - Write out the next two Taylor polynomials p4 and...Ch. 11.1 - Prob. 5QCCh. 11.1 - Prob. 6QCCh. 11.1 - Suppose you use a second-order Taylor polynomial...Ch. 11.1 - Does the accuracy of an approximation given by a...Ch. 11.1 - The first three Taylor polynomials for f(x)=1+x...Ch. 11.1 - Prob. 4E
Ch. 11.1 - Suppose f(0) = 1, f(0) = 0, f"(0) = 2, and f(3)(0)...Ch. 11.1 - Prob. 6ECh. 11.1 - Prob. 7ECh. 11.1 - Suppose you want to estimate 26 using a...Ch. 11.1 - Linear and quadratic approximation a. Find the...Ch. 11.1 - Linear and quadratic approximation a. Find the...Ch. 11.1 - Linear and quadratic approximation a. Find the...Ch. 11.1 - Linear and quadratic approximation a. Find the...Ch. 11.1 - Linear and quadratic approximation a. Find the...Ch. 11.1 - Linear and quadratic approximation a. Find the...Ch. 11.1 - Linear and quadratic approximation a. Find the...Ch. 11.1 - Linear and quadratic approximation a. Find the...Ch. 11.1 - Find the Taylor polynomials p1, , p4 centered at a...Ch. 11.1 - Find the Taylor polynomials p1, , p5 centered at a...Ch. 11.1 - Find the Taylor polynomials p3, , p4 centered at a...Ch. 11.1 - Find the Taylor polynomials p4 and p5 centered at...Ch. 11.1 - Find the Taylor polynomials p1, p2, and p3...Ch. 11.1 - Find the Taylor polynomials p3 and p4 centered at...Ch. 11.1 - Find the Taylor polynomial p3 centered at a = e...Ch. 11.1 - Find the Taylor polynomial p2 centered at a = 8...Ch. 11.1 - Graphing Taylor polynomials a. Find the nth-order...Ch. 11.1 - Prob. 26ECh. 11.1 - Graphing Taylor polynomials a. Find the nth-order...Ch. 11.1 - Graphing Taylor polynomials a. Find the nth-order...Ch. 11.1 - Approximations with Taylor polynomials a. Use the...Ch. 11.1 - Approximations with Taylor polynomials a. Use the...Ch. 11.1 - Approximations with Taylor polynomials a. Use the...Ch. 11.1 - Approximations with Taylor polynomials a. Use the...Ch. 11.1 - Approximations with Taylor polynomials a....Ch. 11.1 - Prob. 34ECh. 11.1 - Approximations with Taylor polynomials a....Ch. 11.1 - Prob. 36ECh. 11.1 - Approximations with Taylor polynomials a....Ch. 11.1 - Prob. 38ECh. 11.1 - Prob. 39ECh. 11.1 - Prob. 40ECh. 11.1 - Prob. 41ECh. 11.1 - Prob. 42ECh. 11.1 - Prob. 43ECh. 11.1 - Prob. 44ECh. 11.1 - Prob. 45ECh. 11.1 - Prob. 46ECh. 11.1 - Prob. 47ECh. 11.1 - Estimating errors Use the remainder to find a...Ch. 11.1 - Estimating errors Use the remainder to find a...Ch. 11.1 - Prob. 50ECh. 11.1 - Prob. 51ECh. 11.1 - Prob. 52ECh. 11.1 - Prob. 53ECh. 11.1 - Prob. 54ECh. 11.1 - Prob. 55ECh. 11.1 - Prob. 56ECh. 11.1 - Prob. 57ECh. 11.1 - Prob. 58ECh. 11.1 - Prob. 59ECh. 11.1 - Prob. 60ECh. 11.1 - Prob. 61ECh. 11.1 - Prob. 62ECh. 11.1 - Prob. 63ECh. 11.1 - Prob. 64ECh. 11.1 - Prob. 65ECh. 11.1 - Prob. 66ECh. 11.1 - Prob. 67ECh. 11.1 - Prob. 68ECh. 11.1 - Prob. 69ECh. 11.1 - Prob. 70ECh. 11.1 - Prob. 71ECh. 11.1 - Prob. 72ECh. 11.1 - Prob. 73ECh. 11.1 - Prob. 74ECh. 11.1 - Prob. 75ECh. 11.1 - Prob. 76ECh. 11.1 - Prob. 77ECh. 11.1 - Prob. 78ECh. 11.1 - Prob. 79ECh. 11.1 - Best center point Suppose you wish to approximate...Ch. 11.1 - Prob. 81ECh. 11.1 - Prob. 82ECh. 11.1 - Prob. 83ECh. 11.1 - Prob. 84ECh. 11.1 - Prob. 85ECh. 11.1 - Prob. 86ECh. 11.1 - Prob. 87ECh. 11.1 - A different kind of approximation When...Ch. 11.2 - By substituting x = 0 in the power series for g,...Ch. 11.2 - What are the radius and interval of convergence of...Ch. 11.2 - Use the result of Example 4 to write a series...Ch. 11.2 - Verify that the power series in Example 5b does...Ch. 11.2 - Write the first four terms of a power series with...Ch. 11.2 - Prob. 2ECh. 11.2 - Prob. 3ECh. 11.2 - Is k=0x2ka power series? If so, find the center a...Ch. 11.2 - Prob. 5ECh. 11.2 - Prob. 6ECh. 11.2 - Prob. 7ECh. 11.2 - Prob. 8ECh. 11.2 - Radius and interval of convergence Determine the...Ch. 11.2 - Radius and interval of convergence Determine the...Ch. 11.2 - Radius and interval of convergence Determine the...Ch. 11.2 - Prob. 12ECh. 11.2 - Radius and interval of convergence Determine the...Ch. 11.2 - Radius and interval of convergence Determine the...Ch. 11.2 - Radius and interval of convergence Determine the...Ch. 11.2 - Radius and interval of convergence Determine the...Ch. 11.2 - Radius and interval of convergence Determine the...Ch. 11.2 - Radius and interval of convergence Determine the...Ch. 11.2 - Radius and interval of convergence Determine the...Ch. 11.2 - Radius and interval of convergence Determine the...Ch. 11.2 - Radius and interval of convergence Determine the...Ch. 11.2 - Radius and interval of convergence Determine the...Ch. 11.2 - Radius and interval of convergence Determine the...Ch. 11.2 - Radius and interval of convergence Determine the...Ch. 11.2 - Radius and interval of convergence Determine the...Ch. 11.2 - Radius and interval of convergence Determine the...Ch. 11.2 - Radius and interval of convergence Determine the...Ch. 11.2 - Radius and interval of convergence Determine the...Ch. 11.2 - Radius and interval of convergence Determine the...Ch. 11.2 - Prob. 30ECh. 11.2 - Radius and interval of convergence Determine the...Ch. 11.2 - Prob. 32ECh. 11.2 - Prob. 33ECh. 11.2 - Prob. 34ECh. 11.2 - Prob. 35ECh. 11.2 - Prob. 36ECh. 11.2 - Radius of convergence Find the radius of...Ch. 11.2 - Prob. 38ECh. 11.2 - Radius of convergence Find the radius of...Ch. 11.2 - Radius of convergence Find the radius of...Ch. 11.2 - Combining power series Use the geometric series...Ch. 11.2 - Combining power series Use the geometric series...Ch. 11.2 - Combining power series Use the geometric series...Ch. 11.2 - Combining power series Use the geometric series...Ch. 11.2 - Combining power series Use the geometric series...Ch. 11.2 - Combining power series Use the geometric series...Ch. 11.2 - Combining power series Use the power series...Ch. 11.2 - Prob. 48ECh. 11.2 - Prob. 49ECh. 11.2 - Prob. 50ECh. 11.2 - Differentiating and integrating power series Find...Ch. 11.2 - Differentiating and integrating power series Find...Ch. 11.2 - Differentiating and integrating power series Find...Ch. 11.2 - Differentiating and integrating power series Find...Ch. 11.2 - Differentiating and integrating power series Find...Ch. 11.2 - Differentiating and integrating power series Find...Ch. 11.2 - Functions to power series Find power series...Ch. 11.2 - Functions to power series Find power series...Ch. 11.2 - Functions to power series Find power series...Ch. 11.2 - Prob. 60ECh. 11.2 - Prob. 61ECh. 11.2 - Prob. 62ECh. 11.2 - Prob. 63ECh. 11.2 - Prob. 64ECh. 11.2 - Prob. 65ECh. 11.2 - Prob. 66ECh. 11.2 - Prob. 67ECh. 11.2 - Series to functions Find the function represented...Ch. 11.2 - Prob. 69ECh. 11.2 - Prob. 70ECh. 11.2 - Prob. 71ECh. 11.2 - Prob. 72ECh. 11.2 - Exponential function In Section 11.3, we show that...Ch. 11.2 - Prob. 74ECh. 11.2 - Prob. 75ECh. 11.2 - Prob. 76ECh. 11.2 - Prob. 77ECh. 11.2 - Prob. 78ECh. 11.3 - Verify that if the Taylor series for f centered at...Ch. 11.3 - Prob. 2QCCh. 11.3 - Verify that the series k=0(1)k+1(x5)k4k+1 from...Ch. 11.3 - Find the first three terms of the Maclaurin series...Ch. 11.3 - Evaluate the binomial coefficients (32) and (123).Ch. 11.3 - Prob. 6QCCh. 11.3 - Prob. 1ECh. 11.3 - Prob. 2ECh. 11.3 - Prob. 3ECh. 11.3 - Prob. 4ECh. 11.3 - Suppose you know the Maclaurin series for f and...Ch. 11.3 - For what values of p does the Taylor series for...Ch. 11.3 - In terms of the remainder, what does it mean for a...Ch. 11.3 - Find the Maclaurin series for sin(x) using the...Ch. 11.3 - Taylor series and interval of convergence a. Use...Ch. 11.3 - Taylor series and interval of convergence a. Use...Ch. 11.3 - Taylor series and interval of convergence a. Use...Ch. 11.3 - Prob. 12ECh. 11.3 - Taylor series and interval of convergence a. Use...Ch. 11.3 - Taylor series and interval of convergence a. Use...Ch. 11.3 - Taylor series and interval of convergence a. Use...Ch. 11.3 - Taylor series and interval of convergence a. Use...Ch. 11.3 - Taylor series and interval of convergence a. Use...Ch. 11.3 - Taylor series and interval of convergence a. Use...Ch. 11.3 - Taylor series and interval of convergence a. Use...Ch. 11.3 - Prob. 20ECh. 11.3 - Prob. 21ECh. 11.3 - Prob. 22ECh. 11.3 - Taylor series and interval of convergence a. Use...Ch. 11.3 - Taylor series and interval of convergence a. Use...Ch. 11.3 - Taylor series and interval of convergence a. Use...Ch. 11.3 - Taylor series and interval of convergence a. Use...Ch. 11.3 - Prob. 27ECh. 11.3 - Prob. 28ECh. 11.3 - Prob. 29ECh. 11.3 - Taylor series centered at a 0 a. Find the first...Ch. 11.3 - Taylor series centered at a 0 a. Find the first...Ch. 11.3 - Taylor series centered at a 0 a. Find the first...Ch. 11.3 - Prob. 33ECh. 11.3 - Taylor series a. Use the definition of a Taylor...Ch. 11.3 - Prob. 35ECh. 11.3 - Prob. 36ECh. 11.3 - Manipulating Taylor series Use the Taylor series...Ch. 11.3 - Prob. 38ECh. 11.3 - Prob. 39ECh. 11.3 - Prob. 40ECh. 11.3 - Manipulating Taylor series Use the Taylor series...Ch. 11.3 - Prob. 42ECh. 11.3 - Prob. 43ECh. 11.3 - Prob. 44ECh. 11.3 - Binomial series a. Find the first four nonzero...Ch. 11.3 - Prob. 46ECh. 11.3 - Prob. 47ECh. 11.3 - Prob. 48ECh. 11.3 - Binomial series a. Find the first four nonzero...Ch. 11.3 - Binomial series a. Find the first four nonzero...Ch. 11.3 - Working with binomial series Use properties of...Ch. 11.3 - Prob. 52ECh. 11.3 - Prob. 53ECh. 11.3 - Prob. 54ECh. 11.3 - Prob. 55ECh. 11.3 - Prob. 56ECh. 11.3 - Working with binomial series Use properties of...Ch. 11.3 - Working with binomial series Use properties of...Ch. 11.3 - Prob. 59ECh. 11.3 - Prob. 60ECh. 11.3 - Prob. 61ECh. 11.3 - Prob. 62ECh. 11.3 - Prob. 63ECh. 11.3 - Prob. 64ECh. 11.3 - Prob. 65ECh. 11.3 - Prob. 66ECh. 11.3 - Prob. 67ECh. 11.3 - Prob. 68ECh. 11.3 - Prob. 69ECh. 11.3 - Prob. 70ECh. 11.3 - Any method a. Use any analytical method to find...Ch. 11.3 - Prob. 72ECh. 11.3 - Prob. 73ECh. 11.3 - Prob. 74ECh. 11.3 - Prob. 75ECh. 11.3 - Prob. 76ECh. 11.3 - Prob. 78ECh. 11.3 - Prob. 80ECh. 11.3 - Prob. 81ECh. 11.3 - Prob. 82ECh. 11.3 - Prob. 83ECh. 11.3 - Prob. 84ECh. 11.3 - Prob. 85ECh. 11.3 - Composition of series Use composition of series to...Ch. 11.3 - Prob. 87ECh. 11.3 - Prob. 88ECh. 11.3 - Prob. 89ECh. 11.3 - Prob. 90ECh. 11.3 - Prob. 91ECh. 11.4 - Use the Taylor series sin x = x - x3/6+ to verify...Ch. 11.4 - Prob. 2QCCh. 11.4 - Prob. 3QCCh. 11.4 - Prob. 1ECh. 11.4 - Prob. 2ECh. 11.4 - Prob. 3ECh. 11.4 - Prob. 4ECh. 11.4 - Prob. 5ECh. 11.4 - Prob. 6ECh. 11.4 - Prob. 7ECh. 11.4 - Prob. 8ECh. 11.4 - Prob. 9ECh. 11.4 - Prob. 10ECh. 11.4 - Limits Evaluate the following limits using Taylor...Ch. 11.4 - Prob. 12ECh. 11.4 - Prob. 13ECh. 11.4 - Prob. 14ECh. 11.4 - Prob. 15ECh. 11.4 - Prob. 16ECh. 11.4 - Limits Evaluate the following limits using Taylor...Ch. 11.4 - Prob. 18ECh. 11.4 - Limits Evaluate the following limits using Taylor...Ch. 11.4 - Prob. 20ECh. 11.4 - Prob. 21ECh. 11.4 - Prob. 22ECh. 11.4 - Prob. 23ECh. 11.4 - Prob. 24ECh. 11.4 - Power series for derivatives a. Differentiate the...Ch. 11.4 - Power series for derivatives a. Differentiate the...Ch. 11.4 - Prob. 27ECh. 11.4 - Prob. 28ECh. 11.4 - Power series for derivatives a. Differentiate the...Ch. 11.4 - Prob. 30ECh. 11.4 - Power series for derivatives a. Differentiate the...Ch. 11.4 - Prob. 32ECh. 11.4 - Differential equations a. Find a power series for...Ch. 11.4 - Prob. 34ECh. 11.4 - Prob. 35ECh. 11.4 - Differential equations a. Find a power series for...Ch. 11.4 - Approximating definite integrals Use a Taylor...Ch. 11.4 - Approximating definite integrals Use a Taylor...Ch. 11.4 - Approximating definite integrals Use a Taylor...Ch. 11.4 - Prob. 40ECh. 11.4 - Approximating definite integrals Use a Taylor...Ch. 11.4 - Prob. 42ECh. 11.4 - Prob. 43ECh. 11.4 - Approximating definite integrals Use a Taylor...Ch. 11.4 - Approximating real numbers Use an appropriate...Ch. 11.4 - Approximating real numbers Use an appropriate...Ch. 11.4 - Prob. 47ECh. 11.4 - Approximating real numbers Use an appropriate...Ch. 11.4 - Approximating real numbers Use an appropriate...Ch. 11.4 - Prob. 50ECh. 11.4 - Prob. 51ECh. 11.4 - Prob. 52ECh. 11.4 - Evaluating an infinite series Write the Taylor...Ch. 11.4 - Prob. 54ECh. 11.4 - Representing functions by power series Identify...Ch. 11.4 - Prob. 56ECh. 11.4 - Prob. 57ECh. 11.4 - Prob. 58ECh. 11.4 - Prob. 59ECh. 11.4 - Prob. 60ECh. 11.4 - Prob. 61ECh. 11.4 - Prob. 62ECh. 11.4 - Prob. 63ECh. 11.4 - Prob. 64ECh. 11.4 - Prob. 65ECh. 11.4 - Limits with a parameter Use Taylor series to...Ch. 11.4 - Prob. 67ECh. 11.4 - Prob. 68ECh. 11.4 - A limit by Taylor series Use Taylor series to...Ch. 11.4 - Prob. 70ECh. 11.4 - Prob. 71ECh. 11.4 - Prob. 72ECh. 11.4 - Prob. 73ECh. 11.4 - Prob. 74ECh. 11.4 - Prob. 75ECh. 11.4 - Prob. 76ECh. 11.4 - Prob. 77ECh. 11.4 - Sine integral function The function...Ch. 11.4 - Fresnel integrals The theory of optics gives rise...Ch. 11.4 - Prob. 80ECh. 11.4 - Prob. 81ECh. 11.4 - Prob. 83ECh. 11.4 - Prob. 84ECh. 11 - Explain why or why not Determine whether the...Ch. 11 - Taylor polynomials Find the nth-order Taylor...Ch. 11 - Taylor polynomials Find the nth-order Taylor...Ch. 11 - Taylor polynomials Find the nth-order Taylor...Ch. 11 - Taylor polynomials Find the nth-order Taylor...Ch. 11 - Taylor polynomials Find the nth-order Taylor...Ch. 11 - Taylor polynomials Find the nth-order Taylor...Ch. 11 - Taylor polynomials Find the nth-order Taylor...Ch. 11 - Prob. 9RECh. 11 - Approximations a. Find the Taylor polynomials of...Ch. 11 - Prob. 11RECh. 11 - Prob. 12RECh. 11 - Approximations a. Find the Taylor polynomials of...Ch. 11 - Prob. 14RECh. 11 - Prob. 15RECh. 11 - Prob. 16RECh. 11 - Prob. 17RECh. 11 - Prob. 18RECh. 11 - Prob. 19RECh. 11 - Prob. 20RECh. 11 - Radius and interval of convergence Use the Ratio...Ch. 11 - Prob. 22RECh. 11 - Radius and interval of convergence Use the Ratio...Ch. 11 - Radius and interval of convergence Use the Ratio...Ch. 11 - Radius and interval of convergence Use the Ratio...Ch. 11 - Radius and interval of convergence Use the Ratio...Ch. 11 - Radius of convergence Find the radius of...Ch. 11 - Radius of convergence Find the radius of...Ch. 11 - Prob. 29RECh. 11 - Prob. 30RECh. 11 - Prob. 31RECh. 11 - Prob. 32RECh. 11 - Prob. 33RECh. 11 - Power series from the geometric series Use the...Ch. 11 - Prob. 35RECh. 11 - Taylor series Write out the first three nonzero...Ch. 11 - Prob. 37RECh. 11 - Taylor series Write out the first three nonzero...Ch. 11 - Taylor series Write out the first three nonzero...Ch. 11 - Prob. 40RECh. 11 - Taylor series Write out the first three nonzero...Ch. 11 - Prob. 42RECh. 11 - Prob. 43RECh. 11 - Prob. 44RECh. 11 - Prob. 45RECh. 11 - Prob. 46RECh. 11 - Convergence Write the remainder term Rn(x) for the...Ch. 11 - Convergence Write the remainder term Rn(x) for the...Ch. 11 - Limits by power series Use Taylor series to...Ch. 11 - Prob. 50RECh. 11 - Limits by power series Use Taylor series to...Ch. 11 - Prob. 52RECh. 11 - Prob. 53RECh. 11 - Prob. 54RECh. 11 - Prob. 55RECh. 11 - Prob. 56RECh. 11 - Definite integrals by power series Use a Taylor...Ch. 11 - Prob. 58RECh. 11 - Approximating real numbers Use an appropriate...Ch. 11 - Prob. 60RECh. 11 - Approximating real numbers Use an appropriate...Ch. 11 - Prob. 62RECh. 11 - Prob. 63RECh. 11 - Prob. 64RECh. 11 - Prob. 65RECh. 11 - Prob. 66RE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- Repeat the previous exercise to find the formula forthe APY of an account that compounds daily. Usethe results from this and the previous exercise todevelop a function I(n)for the APY of any accountthat compounds n times per year.arrow_forwardFind the unknown value. 27. y varies jointly with x and the cube root of 2. If when x=2 and z=27,y=12, find y if x=5 and z=8.arrow_forwardThe radius r, in inches, of a spherical balloon isrelated to the volume, V, by r(V)=3V43 . Air is pumped into the balloon, so the volume after t seconds is given by V(t)=10+20t . a. Find the composite function r(V(t)) . b.Find the exact time when the radius reaches 10 inches.arrow_forward
- Near the surface of the moon, the distance that an object falls is a function of time. It is given by d(t)=2.6667t2 , where t is in seconds and d(t) is in feet. If an object is dropped from a certain height, find the average velocity of die object from t=1tot=2 .arrow_forwardTsunami Waves and BreakwatersThis is a continuation of Exercise 16. Breakwaters affect wave height by reducing energy. See Figure 5.30. If a tsunami wave of height H in a channel of width W encounters a breakwater that narrows the channel to a width w, then the height h of the wave beyond the breakwater is given by h=HR0.5, where R is the width ratio R=w/W. a. Suppose a wave of height 8 feet in a channel of width 5000feet encounters a breakwater that narrows the channel to 3000feet. What is the height of the wave beyond the breakwater? b. If a channel width is cut in half by a breakwater, what is the effect on wave height? 16. Height of Tsunami WavesWhen waves generated by tsunamis approach shore, the height of the waves generally increases. Understanding the factors that contribute to this increase can aid in controlling potential damage to areas at risk. Greens law tells how water depth affects the height of a tsunami wave. If a tsunami wave has height H at an ocean depth D, and the wave travels to a location with water depth d, then the new height h of the wave is given by h=HR0.25, where R is the water depth ratio given by R=D/d. a. Calculate the height of a tsunami wave in water 25feet deep if its height is 3feet at its point of origin in water 15,000feet deep. b. If water depth decreases by half, the depth ratio R is doubled. How is the height of the tsunami wave affected?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageFunctions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage Learning
- Algebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal Littell
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Functions and Change: A Modeling Approach to Coll...
Algebra
ISBN:9781337111348
Author:Bruce Crauder, Benny Evans, Alan Noell
Publisher:Cengage Learning
Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell
Power Series; Author: Professor Dave Explains;https://www.youtube.com/watch?v=OxVBT83x8oc;License: Standard YouTube License, CC-BY
Power Series & Intervals of Convergence; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=XHoRBh4hQNU;License: Standard YouTube License, CC-BY