Why do we study the reversed Carnot cycle even though it is not a realistic model for refrigeration cycles?
Why do we study the reversed Carnot cycle even it is not a realistic model for refrigeration cycles.
Explanation of Solution
A reversed Carnot cycle consists of an isentropic and isothermal process. Generally, the reversed Carnot cycle cannot be used an ideal model for refrigeration purpose since the isentropic process needed a maximum operational speed, but the isothermal process needed a very less operational speed.
But this cycle acts as a realistic model against which refrigeration cycles can be related. Also, the coefficient of performance of the reversed Carnot cycle gives the upper limit for the coefficient of performance of a refrigeration cycle which is functioning between the definite temperature limits.
Hence, the reversed Carnot cycle is considered for refrigeration cycles.
Want to see more full solutions like this?
Chapter 11 Solutions
EBK THERMODYNAMICS: AN ENGINEERING APPR
Additional Engineering Textbook Solutions
Electric Circuits. (11th Edition)
Java: An Introduction to Problem Solving and Programming (8th Edition)
Java How to Program, Early Objects (11th Edition) (Deitel: How to Program)
Mechanics of Materials (10th Edition)
Vector Mechanics for Engineers: Statics and Dynamics
Management Information Systems: Managing The Digital Firm (16th Edition)
- A heat pump operates with a Coefficient of Performance equal to 8. What is the COP if this cycle were to operate as a refrigerator?arrow_forwardA vapor compression refrigeration cycle operates at steady flow conditions with 0.25 kg/s or R-134a. The table below shows some of the operating parameters and properties for the refrigerant. The compressor is réfrigerated, and the condenser is also cooled with water. The compressor receives shaft power equivalent to 7.5 hp. Neglecting changes in kinetic and potential energy changes and any heat loss between devices, please answer the following. a. Complete the table below and sketch the cycle processes on a T-s diagram. When completing the table please use the same number of decimal places as in the tables. b. 123456 Determine the cooling capacity of the refrigeration unit, in Tons (1 refrigeration Ton=211 kJ/min). c. Compute the COP d. Determine the volume flow rate of refrigerant entering the condenser in L/min. e. Determine the mass flow rate of cooling water passing through the condenser. 1. Determine the heat transfer rate from the compressor. g. Compute the rate of entropy…arrow_forwardA vapor compression refrigeration cycle operates at steady flow conditions with 0.25 kg/s or R-134a. The table below shows some of the operating parameters and properties for the refrigerant. The compressor is refrigerated, and the condenser is also cooled with water. The compressor receives shaft power equivalent to 7.5 hp. Neglecting changes in kinetic and potential energy changes and any heat loss between devices, please answer the following. a. Complete the table below and sketch the cycle processes on a T-s diagram. When completing the table please use the same number of decimal places as in the tables. 123456 b. Determine the cooling capacity of the refrigeration unit, in Tons (1 refrigeration Ton = 211 kJ/min). c. Compute the COP. d. Determine the volume flow rate of refrigerant entering the condenser in L/min. e. Determine the mass flow rate of cooling water passing through the condenser. f. Determine the heat transfer rate from the compressor. g. Compute the rate of entropy…arrow_forward
- (e) Draw a Carnot power cycle and a Carnot refrigeration cycle for an ideal gas on a T-S diagram. Please indicate with arrows the direction of the processes.arrow_forwardFrom the given data, if refrigerant circulation rate is 0.025kg/s, find the refrigerant effect of the ideal vapour compression cycle.arrow_forwardTrue or false Heat is transferred to a system by either a cheap commercially available air-sourced heat pump with coefficient of performance of just 1.5, or an expensive 100% efficient electrical resistance heater. The loss of Carnot Work Potential (Exergy destruction, or T0Sloss term) is minimum when heat is added by the cheap commercial heat pump. Heat is transferred to a system by either a cheap commercially available air-sourced heat pump with coefficient of performance of just 1.5, or an expensive 100% efficient isothermal heat source. The loss of Carnot Work Potential (Exergy destruction, or T0Sloss term) is minimum when heat is added by the isothermal heat source.arrow_forward
- A heat pump cycle using water as the working fluid consists of a compressor, a condenser, an expansion valve, and an evaporator. Saturated vapor with mass flow rate of 1 kg/s at 0.5 MPa (state 1) enters the condenser and leaves it as saturated liquid at the same pressure (state 2). The pressure in the evaporator is 0.01 MPa. The condenser and the evaporator processes are isobaric. The compressor is adiabatic and reversible. The valve is adiabatic. A. List all the known information and assumptions. B. Determine the heat output of the condenser (QH) C. Determine the heat input of the evaporator(Qc) D. Determine the coefficient of performance of the heat pump. E. Determine the coefficient of performance of a Carnot heat pump running between the same temperatures TH and TC at the evaporator and condenser. F. Calculate the entropy generation in the compressor. G. Draw the TS diagram for the cycle on paper. (Hint: you must calculate T1, T2, T3, T4, h1, h2, h3, h4, s1, s2, s3, s4, and draw…arrow_forwardyou design a custom refrigeration system using 1,1,2-tetrafluoroethane (R-134a) as refrigerant.You design your ideal compression-based refrigeration cycle to operate between 2 bar and 9 bar. Before enteringthe ideal butterfly valve (delta H = 0), the refrigerant is a saturated liquid. Before entering the compressor, therefrigerant is saturated vapor. In fact, in isentropic operation, the refrigerant which leaves the compressor is alsosaturated vapor. The operation of the compressor and the evaporator is isobaric. Assuming a mass flow rate of1.5 kg / s, determine the compressor efficiency required to achieve a coefficient of performance of 6.96. Whatis ?? ̇ et ?? ̇ to this performance.arrow_forwardDefine the no refrigerator can have a higher COP than a reversible refrigerator operating between the same temperature limits.arrow_forward
- The co-efficient of performance of a refrigerator wor ing on a reversed Carnot cycle is 4. The ratio of t highest absolute temperature to the lowest absolu temperature isarrow_forwardA steam power-plant, with a power of "Wnet", is working according to the Rankine cycle. Steam enters the system in "P3"MPa pressure and 500 C degree temperature, and cooled down in condenser at 10 kPa pressure. Take Source temperature as "TH", and sink temperature 290 K. According to the information given. P3 = 6 MPa, %3D Wnet = 201 MW, TH = 1600 K Determine: 1.Heat generated (MW)(Not Heat given) 2.Pump entrophy generation (MW/K) 3.Combustion chamber entrophy generation (MW/K) 4.Turbine entrophy generation (MW/K)arrow_forwardWhat is Carnot cycle, Rankine cycle and Refrigeration cycle?arrow_forward
- Refrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage Learning