Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 11, Problem 8P
(II) (a) What is the
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(b) On an old-fashioned rotating piano stool, a woman sits holding a pair
of dumbbells at a distance of 0.60 m from the axis of rotation of the
stool. She is given an angular velocity of 3.00 rad/s, after which she
pulls the dumbbells in until they are only 0.20 m distant from the
axis. The woman's moment of inertia about the axis of rotation is
5.00 kg-m² and may be considered constant. Each dumbbell has a
mass of 5.00 kg and may be considered a point mass. Ignore friction.
(a) What is the initial angular momentum of the system? (b) What
is the angular velocity of the system after the dumbbells are pulled in
toward the axis? (c) Compute the kinetic energy of the system before
and after the dumbbells are pulled in. Account for the difference, if
any
(II) The platter of the hard drive of a computer rotates at 7200 rpm (revolution per minute) a) What is the angular velocity(rad/s) of the platter? (b) If the reading head of the drive is located 3.00 cm from the rotation axis, what is the linear speed of the point on the platter just below it? (c) If a single bit requires 0.50 μm of length along the direction of motion, how many bits per second can the writing head write when it is 3.00 cm from the axis?
The angular speed of a motor wheel is increased from 1200 rpmto 3120 rpm in 16 seconds. (i) What is its angular acceleration, assuming theacceleration to be uniform? (ii) How many revolutions does the engine make during this time?
Chapter 11 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 11.1 - CONCEPTUAL EXAMPLE 115 Spinning bicycle wheel....Ch. 11.1 - CONCEPTUAL EXAMPLE 115 Spinning bicycle wheel....Ch. 11.1 - Suppose you are standing on the edge of a large...Ch. 11.2 - For the vectors A and B in the plane of the page...Ch. 11.2 - Prob. 1EECh. 11 - If there were a great migration of people toward...Ch. 11 - Can the diver of Fig. 112 do a somersault without...Ch. 11 - Suppose you are sitting on a rotating stool...Ch. 11 - When a motorcyclist leaves the ground on a jump...Ch. 11 - Suppose you are standing on the edge of a large...
Ch. 11 - A shortstop may leap into the air to catch a ball...Ch. 11 - If all the components of the vectors V1 and V2...Ch. 11 - Name the four different conditions that could make...Ch. 11 - A force F=Fj is applied to an object at a position...Ch. 11 - A particle moves with constant speed along a...Ch. 11 - If the net force on a system is zero, is the net...Ch. 11 - Explain how a child pumps on a swing to make it go...Ch. 11 - Describe the torque needed if the person in Fig....Ch. 11 - An astronaut floats freely in a weightless...Ch. 11 - On the basis of the law of conservation of angular...Ch. 11 - A wheel is rotating freely about a vertical axis...Ch. 11 - Consider the following vector quantities:...Ch. 11 - How does a car make a right turn? Where does the...Ch. 11 - The axis of the Earth processes with a period of...Ch. 11 - Why is it that at most locations on the Earth, a...Ch. 11 - In a rotating frame of reference. Newtons first...Ch. 11 - In the battle of the Falkland Islands in 1914, the...Ch. 11 - Wha is the anugular momentum of a 0.210-kg ball...Ch. 11 - (I) (a) What is the angular momentum of a 2.8-kg...Ch. 11 - (II) A person stands, hands at his side, on a...Ch. 11 - (II) A figure skater can increase her spin...Ch. 11 - (II) A diver (such as the one shown in Fig. 112)...Ch. 11 - (II) A uniform horizontal rod of mass M and length...Ch. 11 - (II) Determine the angular momentum of the...Ch. 11 - (II) (a) What is the angular momentum of a figure...Ch. 11 - (II) A person stands on a platform, initially at...Ch. 11 - (II) A uniform disk turns at 3.7 rev/s around a...Ch. 11 - (II) A person of mass 75 kg stands at the center...Ch. 11 - (II) A potters wheel is rotating around a vertical...Ch. 11 - (II) A 4.2-m-diameter merry-go-round is rotating...Ch. 11 - (II) A woman of mass m stands at the edge of a...Ch. 11 - (II) A nonrotating cylindrical disk of moment of...Ch. 11 - (II) Suppose our Sun eventually collapses into a...Ch. 11 - (III) Hurricanes can involve winds in excess of...Ch. 11 - (III) An asteroid of mass 1.0 105 kg, traveling...Ch. 11 - (III) Suppose a 65-kg person stands at the edge of...Ch. 11 - (I) If vector A points along the negative x axis...Ch. 11 - (I) Show that (a) i i = j j = k k = 0. (b) i j...Ch. 11 - (I) The directions of vectors A and B are given...Ch. 11 - (II) What is the angle between two vectorsA and...Ch. 11 - (II) A particle is located at r=(4.0i+3.5j+6.0k)m....Ch. 11 - (II) Consider a particle of a rigid object...Ch. 11 - (II) (a) Show that the cross product of two...Ch. 11 - (II) An engineer estimates that under the most...Ch. 11 - (II) The origin of a coordinate system is at the...Ch. 11 - (II) Use the result of Problem 26 to determine (a)...Ch. 11 - (III) Show that the velocity v of any point in an...Ch. 11 - (III) Let A,B, and Cbe three vectors, which for...Ch. 11 - (I) What are the x, y, and z components of the...Ch. 11 - (I) Show that the kinetic energy K of a particle...Ch. 11 - (I) Calculate the angular momentum of a particle...Ch. 11 - (II) Two identical particles have equal but...Ch. 11 - (II) Determine the angular momentum of a 75-g...Ch. 11 - (II) A particle is at the position (x, y, z) =...Ch. 11 - Prob. 38PCh. 11 - (II) Four identical particles of mass m are...Ch. 11 - (II) Two lightweight rods 24 cm in length are...Ch. 11 - (II) Figure 1135 shows two masses connected by a...Ch. 11 - (III) A thin rod of length and mass M rotates...Ch. 11 - (III) Show that the total angular momentum L=ripi...Ch. 11 - (III) What is the magnitude of the force F exerted...Ch. 11 - Prob. 45PCh. 11 - Prob. 46PCh. 11 - (II) A thin rod of mass M and length is suspended...Ch. 11 - (II) A uniform stick 1.0 m long with a total mass...Ch. 11 - (II) Suppose a 5.8 1010 kg meteorite struck the...Ch. 11 - (III) A 230-kg beam 2.7 m in length slides...Ch. 11 - (III) A thin rod of mass M and length rests on a...Ch. 11 - (III) On a level billiards table a cue ball,...Ch. 11 - (II) A 220-g top spinning at 15 rev/s makes an...Ch. 11 - (II) A toy gyroscope consists of a 170-g disk with...Ch. 11 - Prob. 55PCh. 11 - Prob. 56PCh. 11 - (II) A bicycle wheel of diameter 65 cm and mass m...Ch. 11 - Prob. 58PCh. 11 - Prob. 59PCh. 11 - (II) Suppose the man at B in Fig. 1126 throws the...Ch. 11 - (II) For what directions of velocity would the...Ch. 11 - (III) We can alter Eqs. 1114 and 1115 for use on...Ch. 11 - (III) An ant crawls with constant speed outward...Ch. 11 - A thin string is wrapped around a cylindrical hoop...Ch. 11 - A particle of mass 1.00 kg is moving with velocity...Ch. 11 - A merry-go-round with a moment of inertia equal to...Ch. 11 - Why might tall narrow SUVs and buses be prone to...Ch. 11 - A spherical asteroid with radius r = 123 m and...Ch. 11 - Prob. 69GPCh. 11 - The position of a particle with mass m traveling...Ch. 11 - A boy rolls a tire along a straight level street....Ch. 11 - A 70 kg person stands on a tiny rotating platform...Ch. 11 - Water drives a waterwheel (or turbine) of radius R...Ch. 11 - The Moon orbits the Earth such that the same side...Ch. 11 - A particle of mass m uniformly accelerates as...Ch. 11 - A projectile with mass m is launched from the...Ch. 11 - Most of our Solar Systems mass is contained in the...Ch. 11 - Prob. 78GPCh. 11 - Competitive ice skaters commonly perform single,...Ch. 11 - A radio transmission tower has a mass of 80 kg and...Ch. 11 - Suppose a star the size of our Sun, but with mass...Ch. 11 - A baseball bat has a sweet spot where a ball can...Ch. 11 - (II) A uniform stick 1.00 m long with a total mass...
Additional Science Textbook Solutions
Find more solutions based on key concepts
41. (II) A ball player catches a ball 3.4 s after throwing it vertically upward. With what speed did hi throw i...
Physics: Principles with Applications
13. A 50 kg box hangs from rope. What is the tension in the rope if:
a. The box is at rest?
b. The box moves ...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
A light-nanosecond is the distance light travels in 1 ns. Convert 1 ft to light-nanoseconds.
University Physics Volume 1
At 15 kHz an inductor has 12 times the reactance of a capacitor. At what frequency will their reactances be equ...
Essential University Physics (3rd Edition)
Choose the best answer to each of the following. Explain your reasoning. Tycho Brahes contributions to astronom...
The Cosmic Perspective Fundamentals (2nd Edition)
Which is hotter, the piece of mantle material at Position A or the piece of mantle material at Position D? Expl...
Lecture- Tutorials for Introductory Astronomy
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- If the torque acting on a particle about an axis through a certain origin is zero, what can you say about its angular momentum about that axis?arrow_forwardAn automobile engine can produce 200Nm of torque. Calculate the angular acceleration produced if 95.0 of this torque is applied to the drive shaft, axle, and rear wheels of a car, given the following information. The car is suspended so that the wheels can turn freely. Each wheel acts like a 15.0-kg disk that has a 0.180-m radius. The walls of each tire act like a 2.00-kg annular ring that has inside radius of 0.180 m and outside radius of 0.320 m. The tread of each tire acts like a 10.0-kg hoop of radius 0.330 m. The 14.0-kg axle acts like a rod that has a 2.00-cm radius. The 30.0-kg drive shaft acts like a rod that has a 3.20-cm radius.arrow_forwardWhich rolls down an inclined plane faster, a hollow cylinder or a solid sphere? Both have the same mass and radius.arrow_forward
- A solid cylinder of mass 2.0 kg and radius 20 cm is rotating counterclockwise around a vertical axis through its center at 600 rev/min. A second solid cylinder of the same mass and radius is rotating clockwise around the same vertical axis at 900 rev/min. If the cylinders couple so that they rotate about the same vertical axis, what is the angular velocity of the combination?arrow_forwardAs the rope of a tethered ball winds around a pole, what happens to the angular velocity of the ball?arrow_forwardCalculate the rotational kinetic energy of a 12-kg motorcycle wheel if its angular velocity is 120 rad/s and its inner radius is 0.280 m and outer radius 0.330 m.arrow_forward
- Can a set of forces have a net torque that is zero and a net force that is not zero?arrow_forwardA space station consists of a giant rotating hollow cylinder of mass 106kg including people on the station and a radius of 100.00 m. It is rotating in space at 3.30 rev/min in order to produce artificial gravity. If 100 people of an average mass of 65.00 kg spacewalk to an awaiting spaceship, what is the new rotation rate when all the people are off the station?arrow_forwardA disk 8.00 cm in radius rotates at a constant rate of 1200 rev/min about its central axis. Determine (a) its angular speed in radians per second, (b) the tangential speed at a point 3.00 cm from its center, (c) the radial acceleration of a point on the rim, and (d) the total distance a point on the rim moves in 2.00 s.arrow_forward
- Can a set of forces have a net force that is zero and a net torque that is not zero?arrow_forwardCheck Your Understanding Which has greater angular momentum: a solid sphere of mass m rotating at a constant angular frequency 0 about the z-axis, or a solid cylinder of same mass and rotation rate about the z-axis?arrow_forwardA 12.0-kg solid sphere of radius 1.50 m is being rotated by applying a constant tangential force of 10.0 N at a perpendicular distance of 1.50 m from the rotation axis through the center of the sphere. If the sphere is initially at rest, how many revolutions must the sphere go through while this force is applied before it reaches an angular speed of 30.0 rad/s?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Rotational Kinetic Energy; Author: AK LECTURES;https://www.youtube.com/watch?v=s5P3DGdyimI;License: Standard YouTube License, CC-BY