Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11, Problem 60P
(II) Suppose the man at B in Fig. 11–26 throws the ball toward the woman at A. (a) In what direction is the ball deflected as seen in the noninertial system? (b) Determine a formula for the amount of deflection and for the (Coriolis) acceleration in this case.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
12–95. The basketball passed through the hoop even
though it barely cleared the hands of the player B who
attempted to block it. Neglecting the size of the ball,
determine the magnitude va of its initial velocity and the
height h of the ball when it passes over player B.
C
30°.
В
h
A
10 ft
7 ft
-25 ft
-5 ft-|
Prob. 12–95
(1998) A jet of water flowing with a velocity of 20 ms- from a pipe of cross-sectional area,
5.0 x 10-3 m² , strikes a wall at right angles and loses all its velocity.
- What is the mass of water striking the wall per second?
What is the change in moment um per second of the water hitting the wall?
What is the force exerted on the wall?
12–98. Determine the horizontal velocity vy of a tennis
ball at A so that it just clears the net at B. Also, find the
distance s where the ball strikes the ground.
B
7.5 ft
C
3 ft
21 ft
Chapter 11 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 11.1 - CONCEPTUAL EXAMPLE 115 Spinning bicycle wheel....Ch. 11.1 - CONCEPTUAL EXAMPLE 115 Spinning bicycle wheel....Ch. 11.1 - Suppose you are standing on the edge of a large...Ch. 11.2 - For the vectors A and B in the plane of the page...Ch. 11.2 - Prob. 1EECh. 11 - If there were a great migration of people toward...Ch. 11 - Can the diver of Fig. 112 do a somersault without...Ch. 11 - Suppose you are sitting on a rotating stool...Ch. 11 - When a motorcyclist leaves the ground on a jump...Ch. 11 - Suppose you are standing on the edge of a large...
Ch. 11 - A shortstop may leap into the air to catch a ball...Ch. 11 - If all the components of the vectors V1 and V2...Ch. 11 - Name the four different conditions that could make...Ch. 11 - A force F=Fj is applied to an object at a position...Ch. 11 - A particle moves with constant speed along a...Ch. 11 - If the net force on a system is zero, is the net...Ch. 11 - Explain how a child pumps on a swing to make it go...Ch. 11 - Describe the torque needed if the person in Fig....Ch. 11 - An astronaut floats freely in a weightless...Ch. 11 - On the basis of the law of conservation of angular...Ch. 11 - A wheel is rotating freely about a vertical axis...Ch. 11 - Consider the following vector quantities:...Ch. 11 - How does a car make a right turn? Where does the...Ch. 11 - The axis of the Earth processes with a period of...Ch. 11 - Why is it that at most locations on the Earth, a...Ch. 11 - In a rotating frame of reference. Newtons first...Ch. 11 - In the battle of the Falkland Islands in 1914, the...Ch. 11 - Wha is the anugular momentum of a 0.210-kg ball...Ch. 11 - (I) (a) What is the angular momentum of a 2.8-kg...Ch. 11 - (II) A person stands, hands at his side, on a...Ch. 11 - (II) A figure skater can increase her spin...Ch. 11 - (II) A diver (such as the one shown in Fig. 112)...Ch. 11 - (II) A uniform horizontal rod of mass M and length...Ch. 11 - (II) Determine the angular momentum of the...Ch. 11 - (II) (a) What is the angular momentum of a figure...Ch. 11 - (II) A person stands on a platform, initially at...Ch. 11 - (II) A uniform disk turns at 3.7 rev/s around a...Ch. 11 - (II) A person of mass 75 kg stands at the center...Ch. 11 - (II) A potters wheel is rotating around a vertical...Ch. 11 - (II) A 4.2-m-diameter merry-go-round is rotating...Ch. 11 - (II) A woman of mass m stands at the edge of a...Ch. 11 - (II) A nonrotating cylindrical disk of moment of...Ch. 11 - (II) Suppose our Sun eventually collapses into a...Ch. 11 - (III) Hurricanes can involve winds in excess of...Ch. 11 - (III) An asteroid of mass 1.0 105 kg, traveling...Ch. 11 - (III) Suppose a 65-kg person stands at the edge of...Ch. 11 - (I) If vector A points along the negative x axis...Ch. 11 - (I) Show that (a) i i = j j = k k = 0. (b) i j...Ch. 11 - (I) The directions of vectors A and B are given...Ch. 11 - (II) What is the angle between two vectorsA and...Ch. 11 - (II) A particle is located at r=(4.0i+3.5j+6.0k)m....Ch. 11 - (II) Consider a particle of a rigid object...Ch. 11 - (II) (a) Show that the cross product of two...Ch. 11 - (II) An engineer estimates that under the most...Ch. 11 - (II) The origin of a coordinate system is at the...Ch. 11 - (II) Use the result of Problem 26 to determine (a)...Ch. 11 - (III) Show that the velocity v of any point in an...Ch. 11 - (III) Let A,B, and Cbe three vectors, which for...Ch. 11 - (I) What are the x, y, and z components of the...Ch. 11 - (I) Show that the kinetic energy K of a particle...Ch. 11 - (I) Calculate the angular momentum of a particle...Ch. 11 - (II) Two identical particles have equal but...Ch. 11 - (II) Determine the angular momentum of a 75-g...Ch. 11 - (II) A particle is at the position (x, y, z) =...Ch. 11 - Prob. 38PCh. 11 - (II) Four identical particles of mass m are...Ch. 11 - (II) Two lightweight rods 24 cm in length are...Ch. 11 - (II) Figure 1135 shows two masses connected by a...Ch. 11 - (III) A thin rod of length and mass M rotates...Ch. 11 - (III) Show that the total angular momentum L=ripi...Ch. 11 - (III) What is the magnitude of the force F exerted...Ch. 11 - Prob. 45PCh. 11 - Prob. 46PCh. 11 - (II) A thin rod of mass M and length is suspended...Ch. 11 - (II) A uniform stick 1.0 m long with a total mass...Ch. 11 - (II) Suppose a 5.8 1010 kg meteorite struck the...Ch. 11 - (III) A 230-kg beam 2.7 m in length slides...Ch. 11 - (III) A thin rod of mass M and length rests on a...Ch. 11 - (III) On a level billiards table a cue ball,...Ch. 11 - (II) A 220-g top spinning at 15 rev/s makes an...Ch. 11 - (II) A toy gyroscope consists of a 170-g disk with...Ch. 11 - Prob. 55PCh. 11 - Prob. 56PCh. 11 - (II) A bicycle wheel of diameter 65 cm and mass m...Ch. 11 - Prob. 58PCh. 11 - Prob. 59PCh. 11 - (II) Suppose the man at B in Fig. 1126 throws the...Ch. 11 - (II) For what directions of velocity would the...Ch. 11 - (III) We can alter Eqs. 1114 and 1115 for use on...Ch. 11 - (III) An ant crawls with constant speed outward...Ch. 11 - A thin string is wrapped around a cylindrical hoop...Ch. 11 - A particle of mass 1.00 kg is moving with velocity...Ch. 11 - A merry-go-round with a moment of inertia equal to...Ch. 11 - Why might tall narrow SUVs and buses be prone to...Ch. 11 - A spherical asteroid with radius r = 123 m and...Ch. 11 - Prob. 69GPCh. 11 - The position of a particle with mass m traveling...Ch. 11 - A boy rolls a tire along a straight level street....Ch. 11 - A 70 kg person stands on a tiny rotating platform...Ch. 11 - Water drives a waterwheel (or turbine) of radius R...Ch. 11 - The Moon orbits the Earth such that the same side...Ch. 11 - A particle of mass m uniformly accelerates as...Ch. 11 - A projectile with mass m is launched from the...Ch. 11 - Most of our Solar Systems mass is contained in the...Ch. 11 - Prob. 78GPCh. 11 - Competitive ice skaters commonly perform single,...Ch. 11 - A radio transmission tower has a mass of 80 kg and...Ch. 11 - Suppose a star the size of our Sun, but with mass...Ch. 11 - A baseball bat has a sweet spot where a ball can...Ch. 11 - (II) A uniform stick 1.00 m long with a total mass...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Modified True/False 9. A giant bacterium that is large enough to be seen without a microscope is Selenomonas.
Microbiology with Diseases by Body System (5th Edition)
Explain how you can determine whether fault N is older or younger than igneous intrusion J.
Applications and Investigations in Earth Science (9th Edition)
When Mendel did crosses of true-breeding purple- and white-flowered pea plants, the white-flowered trait disapp...
Campbell Biology (11th Edition)
23. How many significant figures are there in the following values?
a. 0.05 × 10-4 b. 0.00340
c. 7.2 × 104 ...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Name the components (including muscles) of the thoracic cage. List the contents of the thorax.
Human Physiology: An Integrated Approach (8th Edition)
Which compound is more easily decarboxylated?
Organic Chemistry (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Why can a squirrel jump from a tree branch to the ground and nm away undamaged, while a human could break a bone in such a fall?arrow_forward(a) Distinguish between center of mass and center of gravity.arrow_forwardLook for center 0f mass by caIcuIus 0f a soIid uniform hemisphere 0f M as mass and R as radius with its flat side pointed towards the ground.arrow_forward
- In the slingshot effect, the transfer of energy in an elastic collision is used to power a space probeprobe so that it can escape from the solar system. All velocity values are relative to an inertialinertial reference in which the center of the Sun remains at rest. Fig. 1(b) below shows a space probemoving at 10.4 km/s towards Saturn, which in turn is moving at 9.6 km/s towards the probe. Due todue to the gravitational force between Saturn and the probe, the probe goes around Saturn and moves in the opposite direction with speed vf .velocity vf . (a) Assuming this collision is one-dimensional and elastic, and the mass if Saturn is much greater than that of the probe, determine vfthat of the probe, determine vf . (b) By what factor does the kinetic energy increase? (c) Where does this energy come from?arrow_forwardA ball has a weight of 3-lb strikes a 5-lb rod at a point C which far away from A with a value of x = 3 ft. The velocity of the ball mass center (Vap)ı = 6 ft/s when it strikes the rod which is at rest. Assuming the coefficient of restitution after the impact e 0.8, determine the following: 4 ft O After the impact, the velocity of the ball mass center (ve,)2- O After the impact, the velocity of point C (vc):- o The angular velocity (w) of the rod about the Zaxis. 0.5 A G, In your calculation, neglect the inertia of the vertical part of the rod AO. r= 0.5 ftarrow_forwardNeed help with this question!arrow_forward
- A billiard player took his shot on a tournament game moving the cue ball at a speed of 3.5 m/s and makes a glancing collision with the target ball. After collision, the cue ball moves off at an angle of theta = 37.0 deg relative to the original direction of its motion and the target ball deflects at an angle of phi to the same axis but opposite direction. (I)Calculate for the the angle phi (II)Find the final speeds of the two billiard ballsarrow_forwardA mass mA = 50 kg moving with a velocity vA = (5.0i + 2.0j – 4.0k) m/s, collides with mass mB = 5.0 kg which is initially at rest. Immediately after the collision, mass mA is observed traveling at velocity (-3.0i - 2.0k) m/s. Calculate the magnitudes of vA and vA’. the velocity of B after impact (vB’}.arrow_forward13-82. The cyclist is coasting freely down the hill with a speed of 15 m/s at y = 0.2 m. Determine the resultant normal reaction on the bicycle and the rate of increase in speed at the instant shown. The bicycle and rider have a total mass of 80 kg. Neglect friction, the mass of the wheels, and the size of the bicycle. y = 0.2e Prob. 13-82arrow_forward
- (II) An atomic nucleus at rest decays radioactively into analpha particle and a different nucleus. What will be the speedof this recoiling nucleus if the speed of the alpha particleis 2.8x105 m/s ?Assume the recoiling nucleus has a mass57 times greater than that of the alpha particlearrow_forward(II) A radioactive nucleus at rest decays into a second nucleus, an electron, and a neutrino. The electron and neutrino are emitted at right angles and have momenta of 9.6 × 10-23 kg ·m/s and 6.2 × 10-23 kg·m/s, respectively. Determine the magnitude and the direction of the momen- tum of the second (recoiling) nucleus.arrow_forward(I) In a ballistic pendulum experiment, projectile 1 resultsin a maximum height h of the pendulum equal to 2.6 cm.A second projectile (of the same mass) causes the pendulumto swing twice as high h2=5.2 cm, The second projectilewas how many times faster than the first?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Work and Energy - Physics 101 / AP Physics 1 Review with Dianna Cowern; Author: Physics Girl;https://www.youtube.com/watch?v=rKwK06stPS8;License: Standard YouTube License, CC-BY