BASIC BIOMECHANICS
8th Edition
ISBN: 9781259913877
Author: Hall
Publisher: RENT MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11, Problem 7AP
A majorette in the Rose Bowl Parade tosses a baton into the air with an initial angular velocity of 2.5 rev/s. If the baton undergoes a constant acceleration while airborne of −0.2 rev/s2 and its angular velocity is 0.8 rev/s when the majorette catches it, how many revolutions does it make in the air? (Answer: 14 rev)
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Based on the acceleration in the above ball rolling down an inclined plane (with vo = 0 meters per second), how far would it have traveled along the inclined plane in the first six seconds of rolling?
9 meters
16 meters
25 meters
36 meters
49 meters
When Galileo Galilei rolled a ball down an inclined plane, it traveled 2 meters in the first second, and a total of 8 meters in the first two With vo = 0, what was its acceleration on this inclined plane?
0 meter per second2
0 meters per second2
0 meters per second2
0 meters per second2
0 meters per second2
Using the above “mean-speed theorem”, calculate the average velocity of a car with constant acceleration from 0 km/hour (initial speed) to 80 km/hour (final speed) over a 5-minute period of time.
average velocity over 5 minutes = 16 kilometers/hour
average velocity over 5 minutes = 20 kilometers/hour
average velocity over 5 minutes = 24 kilometers/hour
average velocity over 5 minutes = 32 kilometers/hour
average velocity over 5 minutes = 40 kilometers/hour
Chapter 11 Solutions
BASIC BIOMECHANICS
Ch. 11 - The relative angle at the knee changes from 0 to...Ch. 11 - Identify the angular displacement, the angular...Ch. 11 - How many revolutions are completed by a top...Ch. 11 - A kickers extended leg is swung for 0.4 s in a...Ch. 11 - The angular velocity of a runners thigh changes...Ch. 11 - A tennis racquet swung with an angular velocity of...Ch. 11 - A 1.2-m golf club is swung in a planar motion by a...Ch. 11 - David is fighting Goliath. If Davids 0.75-m sling...Ch. 11 - A baseball is struck by a bat 46 cm from the axis...Ch. 11 - A polo players arm and stick form a 2.5-m rigid...
Ch. 11 - Explain how the velocity of the ball in Problem 4...Ch. 11 - A majorette in the Rose Bowl Parade tosses a baton...Ch. 11 - A cyclist enters a curve of 30-m radius at a speed...Ch. 11 - A hammer is being accelerated at 15 rad/s2. Given...Ch. 11 - A speed skater increases her speed from 10 m/s to...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, bioengineering and related others by exploring similar questions and additional content below.Similar questions
- Suppose as astronaut has landed on Mars. Fully equipped, the astronaut has a mass of 130 kg, and when the astronaut gets in scale, the reading is 477 N. What is the acceleration due to gravity on Mars?arrow_forwardStarting at rest, an object falls 144 feet in a vacuum (acceleration = 32 feet per second2). If the final velocity of the object was 96 feet per second at impact (vf), how long was the fall? 1.0 seconds 2.0 seconds C. 3.0 seconds 4.0 seconds 5.0 secondsarrow_forwardAccording to Jean Buridan’s equation, the momentum or “impetus” of an 8 kilogram mass moving at 48 meters per second would be: 192 kilogram-meters per second 384 kilogram-meters per second 576 kilogram-meters per second 768 kilogram-meters per second 960 kilogram-meters per secondarrow_forward
- A scientist was investigating if differences in the frictional work performed on a model car can change depending on its mass (in grams) and whether the car moves up or down an inclined plane. They decided to measure the amount of frictional force experienced by the model car and the distance it traveled in meters. The scientists were able to evaluate the frictional work using the following data. Mass (g) Distance (m) Force Work Done by Friction (J) car going up the incline 100 39 0.063 2.457 car going down the incline 70 39 0.2309 ? It is known that the relationship between force and distance determines the work done by friction (W+). W₁ = fd Wf work done by friction f = force d = distance Question: How much work done by friction was exerted on the car as it moved down the inclined plane? You may use a calculator. 1 2.457 9.005 11.46 16.16 PREVIOUS FINISHarrow_forwardWhat was the momentum or “impetus” of the above moving object before its collision? 252 kilogram-meters per second 168 kilogram-meters per second 120 kilogram-meters per second 84 kilogram-meters per second 28 kilogram-meters per secondarrow_forwarda toy car rolls 10 meters (m) across the floor. it takes 5 seconds (s) to cross this distance. what is the speed of this car?arrow_forward
- Consider your loved one* who comes close to you! Calculate the attractive forces between your bodies if you keep a covid safety distance of 1.5 m. At which angular velocity could you spin about a common center such that the centrifugal forces don’t drive you away from each other? What is the maximum force if the distance was zero? *could be real or just an imaginary person/pet / objectarrow_forwardThe following graph is simulated (but realistic) data from a VO₂max trial of a human athlete running (no gait changes). Estimate and label the following variables: VO2 (ml/kg/min) 1. VO₂max 2. Incremental cost of locomotion 3. Maximum aerobic speed 4. RMR + postural costs 70 60 50 40 30 20 10 0 2 3 4 5 6 7 8 9 10 11 12 13 MPHarrow_forwardCalculate the total amount of work performed in 5 minutes of exercise on the cycle ergometer, given the following:Resistance on the flywheel = 25 NCranking speed = 60 rpmDistance traveled per revolution = 6 metersarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles Of Radiographic Imaging: An Art And A ...Health & NutritionISBN:9781337711067Author:Richard R. Carlton, Arlene M. Adler, Vesna BalacPublisher:Cengage Learning
- Fundamentals of Sectional Anatomy: An Imaging App...BiologyISBN:9781133960867Author:Denise L. LazoPublisher:Cengage Learning
Principles Of Radiographic Imaging: An Art And A ...
Health & Nutrition
ISBN:9781337711067
Author:Richard R. Carlton, Arlene M. Adler, Vesna Balac
Publisher:Cengage Learning
Fundamentals of Sectional Anatomy: An Imaging App...
Biology
ISBN:9781133960867
Author:Denise L. Lazo
Publisher:Cengage Learning
Chapter 7 - Human Movement Science; Author: Dr. Jeff Williams;https://www.youtube.com/watch?v=LlqElkn4PA4;License: Standard youtube license