Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11, Problem 5OQ
A system consists of five particles. How many terms appear in the expression for the total gravitational potential energy of the system? (a) 4 (b) 5 (c) 10 (d) 20 (e) 25
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A system consists of six particles. How many terms appear in the expression for the total gravitational potential energy of the system?
O 15
O 6
O 5
О 36
О 30
3. (a) If you are walking along a line of vector l = (2î – 3ĵ + 5k)m, where a gravitational field E =
(4î + 6j – k)N /m is acting. Calculate the gravitational potential.
(b) A team of NSU participated in NASA space settlement design contest, 2020 and won the contest.
Now, your spaceship left the Earth with velocity V which stopped at infinity. What was the total energy
of the spaceship used by NSU team at the end of journey?
You have an object of mass 555 kg, that is a distance 1.0 m above the ground. If we
call the ground a height 0, what is the gravitational potential energy of the object
(measured in Joules)?
Your Answer:
Answer
Chapter 11 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 11.1 - A planet has two moons of equal mass. Moon 1 is in...Ch. 11.3 - An asteroid is in a highly eccentric elliptical...Ch. 11.4 - Prob. 11.3QQCh. 11.5 - Prob. 11.4QQCh. 11 - Prob. 1OQCh. 11 - The gravitational force exerted on an astronaut on...Ch. 11 - Prob. 3OQCh. 11 - Prob. 4OQCh. 11 - A system consists of five particles. How many...Ch. 11 - Suppose the gravitational acceleration at the...
Ch. 11 - Prob. 7OQCh. 11 - Prob. 8OQCh. 11 - Prob. 9OQCh. 11 - Rank the following quantities of energy from...Ch. 11 - Prob. 11OQCh. 11 - Prob. 12OQCh. 11 - Prob. 13OQCh. 11 - Prob. 14OQCh. 11 - Prob. 1CQCh. 11 - Prob. 2CQCh. 11 - Prob. 3CQCh. 11 - Prob. 4CQCh. 11 - Prob. 5CQCh. 11 - Prob. 6CQCh. 11 - Prob. 7CQCh. 11 - Prob. 8CQCh. 11 - In his 1798 experiment, Cavendish was said to have...Ch. 11 - Prob. 1PCh. 11 - Prob. 2PCh. 11 - A 200-kg object and a 500-kg object are separated...Ch. 11 - Prob. 4PCh. 11 - Prob. 5PCh. 11 - Prob. 6PCh. 11 - Prob. 7PCh. 11 - Prob. 8PCh. 11 - Prob. 9PCh. 11 - Prob. 10PCh. 11 - A spacecraft in the shape of a long cylinder has a...Ch. 11 - (a) Compute the vector gravitational field at a...Ch. 11 - Prob. 13PCh. 11 - Two planets X and Y travel counterclockwise in...Ch. 11 - Prob. 15PCh. 11 - Prob. 16PCh. 11 - Prob. 17PCh. 11 - Prob. 18PCh. 11 - Plasketts binary system consists of two stars that...Ch. 11 - As thermonuclear fusion proceeds in its core, the...Ch. 11 - Comet Halley (Fig. P11.21) approaches the Sun to...Ch. 11 - Prob. 22PCh. 11 - Prob. 23PCh. 11 - Prob. 24PCh. 11 - Prob. 25PCh. 11 - A space probe is fired as a projectile from the...Ch. 11 - Prob. 27PCh. 11 - Prob. 28PCh. 11 - Prob. 29PCh. 11 - Prob. 30PCh. 11 - Prob. 31PCh. 11 - Prob. 32PCh. 11 - Prob. 33PCh. 11 - Prob. 34PCh. 11 - Prob. 35PCh. 11 - Prob. 36PCh. 11 - Prob. 37PCh. 11 - Prob. 38PCh. 11 - Prob. 39PCh. 11 - Prob. 40PCh. 11 - Prob. 41PCh. 11 - Prob. 42PCh. 11 - Prob. 43PCh. 11 - Prob. 44PCh. 11 - Prob. 45PCh. 11 - Prob. 46PCh. 11 - Let gM represent the difference in the...Ch. 11 - Prob. 48PCh. 11 - Prob. 49PCh. 11 - Two stars of masses M and m, separated by a...Ch. 11 - Prob. 51PCh. 11 - Prob. 52PCh. 11 - Prob. 53PCh. 11 - Prob. 54PCh. 11 - Prob. 55PCh. 11 - Prob. 56PCh. 11 - Prob. 57PCh. 11 - Prob. 58PCh. 11 - Prob. 59PCh. 11 - Prob. 60PCh. 11 - Prob. 61PCh. 11 - Prob. 62PCh. 11 - Prob. 63PCh. 11 - Prob. 64PCh. 11 - Prob. 65P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In each situation shown in Figure P8.12, a ball moves from point A to point B. Use the following data to find the change in the gravitational potential energy in each case. You can assume that the radius of the ball is negligible. a. h = 1.35 m, = 25, and m = 0.65 kg b. R = 33.5 m and m = 756 kg c. R = 33.5 m and m = 756 kg FIGURE P8.12 Problems 12, 13, and 14.arrow_forwardRank the following quantities of energy from largest to the smallest. State if any are equal. (a) the absolute value of the average potential energy of the SunEarth system (b) the average kinetic energy of the Earth in its orbital motion relative to the Sun (c) the absolute value of the total energy of the SunEarth systemarrow_forward(a) Can the kinetic energy of a system be negative? (b) Can the gravitational potential energy of a system be negative? Explain.arrow_forward
- A 4.00-kg particle moves from the origin to position , having coordinates x = 5.00 m and y = 5.00 m (Fig. P7.31). One force on the particle is the gravitational force acting in the negative y direction. Using Equation 7.3, calculate the work done by the gravitational force on the particle as it goes from O to along (a) the purple path, (b) the red path, and (c) the blue path, (d) Your results should all be identical. Why? Figure P7.31arrow_forwardThe Earths perihelion distance (closest approach to the Sun) is rp = 1.48 1011 m, and its aphelion distance (farthest point) is rA = 1.52 1011 m. What is the change in the SunEarths gravitational potential energy as the Earth moves from aphelion to perihelion? What is the change in its gravitational potential energy from perihelion to aphelion?arrow_forwardA 4.00-kg particle moves from the origin to position ©, having coordinates x = 5.00 m and y = 5.00 m (Fig. P6.42). One force on the particle is the gravitational force acting in the negative y direction. Using Equation 6.3, calculate the work done by the gravitational force on the particle as it goes from O to © along (a) the purple path, (b) the red path, and (c) the blue path. (d) Your results should all be identical. Why? Figure P6.42 Problems 42 through 45.arrow_forward
- A block of mass m = 2.50 kg is pushed a distance d = 2.20 m along a frictionless, horizontal table by a constant applied force of magnitude F = 16.0 N directed at an angle = 25.0 below the horizontal as shown in Figure P6.3. Determine the work done on the block by (a) the applied force, (b) the normal force exerted by the table, (c) the gravitational force, and (d) the net force on the block. Figure P6.3arrow_forwardHow much work (energy) is required to lift a 227 g object by a height of 52.0 feet? The earth's gravitational constant is g = 9.80 m/s2.arrow_forwardA mass M is in the gravitational field created by mass m. What is the potential energy of the mass M at the point A = (3,4, 12) and at the point B = (2,2,0) ? Find the work done by the gravitational force in moving a mass M from the point A = (3, 4, 12) to the point B = (2, 2, 0). %3Darrow_forward
- A satellite in Earth orbit has a mass of 96 kg and is at an altitude of 1.98 x 10° m. (Assume that U = 0 as r – ∞.) (a) What is the potential energy of the satellite-Earth system? (b) What is the magnitude of the gravitational force exerted by the Earth on the satellite? 97671.15 What is the equation for gravitational force when the altitude is comparable to the radius of the Earth? N (c) What force, if any, does the satellite exert on the Earth? (Enter the magnitude of the force, if there is no force enter 0.)arrow_forwardA moon of mass m and radius a is orbiting a planet of mass M and of radius b at a distance d (center-to-center) in a circular orbit. Derive an expression for the total mechanical energy E of the moon in terms of m, M, d and the gravitational constant G.arrow_forwardThe three spheres in the figure, with masses m. = 77 g, ma = 8 g, and m, = 23 g, have their centers on a common line, with L = 21 cm and d = 4 cm. You move sphere B along the line until its center-to-center separation from C is d = 4 cm. How much work is done on sphere B(a) by you and (b) by the net gravitational (a) Number Units (b) Number Unitsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Kinetic Energy and Potential Energy; Author: Professor Dave explains;https://www.youtube.com/watch?v=g7u6pIfUVy4;License: Standard YouTube License, CC-BY