Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 11, Problem 42P
(a)
To determine
The energy required to ionize the hydrogen atom in the ground state.
(b)
To determine
The energy required to ionize the hydrogen atom in the
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The radius of a hydrogen nucleus is believed to be about 1.2 x 10-15 m.
(a) If an electron rotates around the nucleus at that radius, what would be its speed according to the planetary model?
(b) What would be the total mechanical energy?
(c) Are these reasonable?
Determine the distance between the electron and proton in an atom if the potential energy ?U of the electron is 12.6 eV (electronvolt, 1 eV =1.6×10−19=1.6×10−19 J). Give your answer in Angstrom (1 A = 10-10 m).
Can an electron in a hydrogen atom have a speed of 3.60 × 105 m/s? If so, what are its energy and the radius of its orbit? What about a speed of 3.65 × 105 m/s?
Chapter 11 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 11.1 - A planet has two moons of equal mass. Moon 1 is in...Ch. 11.3 - An asteroid is in a highly eccentric elliptical...Ch. 11.4 - Prob. 11.3QQCh. 11.5 - Prob. 11.4QQCh. 11 - Prob. 1OQCh. 11 - The gravitational force exerted on an astronaut on...Ch. 11 - Prob. 3OQCh. 11 - Prob. 4OQCh. 11 - A system consists of five particles. How many...Ch. 11 - Suppose the gravitational acceleration at the...
Ch. 11 - Prob. 7OQCh. 11 - Prob. 8OQCh. 11 - Prob. 9OQCh. 11 - Rank the following quantities of energy from...Ch. 11 - Prob. 11OQCh. 11 - Prob. 12OQCh. 11 - Prob. 13OQCh. 11 - Prob. 14OQCh. 11 - Prob. 1CQCh. 11 - Prob. 2CQCh. 11 - Prob. 3CQCh. 11 - Prob. 4CQCh. 11 - Prob. 5CQCh. 11 - Prob. 6CQCh. 11 - Prob. 7CQCh. 11 - Prob. 8CQCh. 11 - In his 1798 experiment, Cavendish was said to have...Ch. 11 - Prob. 1PCh. 11 - Prob. 2PCh. 11 - A 200-kg object and a 500-kg object are separated...Ch. 11 - Prob. 4PCh. 11 - Prob. 5PCh. 11 - Prob. 6PCh. 11 - Prob. 7PCh. 11 - Prob. 8PCh. 11 - Prob. 9PCh. 11 - Prob. 10PCh. 11 - A spacecraft in the shape of a long cylinder has a...Ch. 11 - (a) Compute the vector gravitational field at a...Ch. 11 - Prob. 13PCh. 11 - Two planets X and Y travel counterclockwise in...Ch. 11 - Prob. 15PCh. 11 - Prob. 16PCh. 11 - Prob. 17PCh. 11 - Prob. 18PCh. 11 - Plasketts binary system consists of two stars that...Ch. 11 - As thermonuclear fusion proceeds in its core, the...Ch. 11 - Comet Halley (Fig. P11.21) approaches the Sun to...Ch. 11 - Prob. 22PCh. 11 - Prob. 23PCh. 11 - Prob. 24PCh. 11 - Prob. 25PCh. 11 - A space probe is fired as a projectile from the...Ch. 11 - Prob. 27PCh. 11 - Prob. 28PCh. 11 - Prob. 29PCh. 11 - Prob. 30PCh. 11 - Prob. 31PCh. 11 - Prob. 32PCh. 11 - Prob. 33PCh. 11 - Prob. 34PCh. 11 - Prob. 35PCh. 11 - Prob. 36PCh. 11 - Prob. 37PCh. 11 - Prob. 38PCh. 11 - Prob. 39PCh. 11 - Prob. 40PCh. 11 - Prob. 41PCh. 11 - Prob. 42PCh. 11 - Prob. 43PCh. 11 - Prob. 44PCh. 11 - Prob. 45PCh. 11 - Prob. 46PCh. 11 - Let gM represent the difference in the...Ch. 11 - Prob. 48PCh. 11 - Prob. 49PCh. 11 - Two stars of masses M and m, separated by a...Ch. 11 - Prob. 51PCh. 11 - Prob. 52PCh. 11 - Prob. 53PCh. 11 - Prob. 54PCh. 11 - Prob. 55PCh. 11 - Prob. 56PCh. 11 - Prob. 57PCh. 11 - Prob. 58PCh. 11 - Prob. 59PCh. 11 - Prob. 60PCh. 11 - Prob. 61PCh. 11 - Prob. 62PCh. 11 - Prob. 63PCh. 11 - Prob. 64PCh. 11 - Prob. 65P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What is the maximum kinetic energy of an electron such that a collision between the electron and a stationary hydrogen atom in its ground state is definitely elastic?arrow_forwardDetermine the distance between the electron and proton in an atom if the potential energy U of the electron is 13 eV (electronvolt, 1 eV = 1.6 x 10-19 J). Give your answer in Angstrom (1 A = 10-10 m). Answer: Choose... +arrow_forwardDetermine the distance between the electron and proton in an atom if the potential energy UU of the electron is 11 eV (electronvolt, 1 eV =1.6×10−19=1.6×10−19 J). Give your answer in Angstrom (1 A = 10-10 m).arrow_forward
- (a) In the Bohr model of the atom, the ground-state electron in hydrogen has an orbital speed of 2190 km/s. What is its kinetic energy? (b) If you drop a 1.0-kg weight (about 2 lb) from a height of 1.0 m, how many joules of kinetic energy will it have when it reaches the ground? (c) Is it reasonable that a 30-kg child could run fast enough to have 100 J of kinetic energy?arrow_forwardWhat is the minimum energy (measured in eV) required to ionize a Hydrogen atom in the level n=r?arrow_forwardChapter 39, Problem 043 In the ground state of the hydrogen atom, the electron has a total energy of -13.6 ev. What are (a) its kinetic energy and (b) its potential energy if the electron is a distance 4.0a from the central nucleus? Here a is the Bohr radius. (a) Number Units eV (b) Number Units eVarrow_forward
- In hydrogen atoms the energy of the electron in the first Bohr orbit is – 1312 × 105 J mol–1. Determine the energy required for the excitation to the second Bohr orbit.arrow_forwardA hydrogen atom initially in its ground state (n=1) absorbs a photon and ends up in the state for which n = 3. What is the energy of the absorbed photon?arrow_forwardAs per Bohr model of a hydrogen atom for a stable orbit centripetal, Coulomb, and all forces should be in equilibrium. Therefore, for an electron with mass me and speed v₁ on the nth orbit with radius rn, (k being Coulomb/s constant) mevn = ke²/rn mevn² = ke²/rn mevn²/rn = ke²/rn 2.2 Ome²v² = ke²/r²arrow_forward
- In a hydrogen atom, the electron and proton are bound at a distance of about 0.53 Å: (a) Estimate the potential energy of the system in eV, taking the zero of the potential energy at infinite separation of the electron from proton.arrow_forwardThe total energy of an electron in the first excited state of the hydrogen atom is about –3.4 eV.(a) What is the kinetic energy of the electron in this state?(b) What is the potential energy of the electron in this state?(c) Which of the answers above would change if the choice of the zero of potential energy is changed?arrow_forwardUsing the Bohr model, calculate the speed of the electron when it is in the first excited state, n = 2. The Bohr radius ₁ 5.29 x 10-11 m. Assume the electron is non-relativistic.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Time Dilation - Einstein's Theory Of Relativity Explained!; Author: Science ABC;https://www.youtube.com/watch?v=yuD34tEpRFw;License: Standard YouTube License, CC-BY