Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11, Problem 48PQ
To determine
The kinetic energy of the Jupiter and speed of the gravitational slingshot of the Jupiter planet.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider the observation that the acceleration due to the gravitational force acting on a mass around a host planet decreases with the square of the separation between the objects. We can ask ourselves: why is it still accurate to consider a gravitational acceleration value of 9.8\frac{m}{s^2}9.8s2m for all of our projectile motion problems and all of our gravitational potential energy from prior modules?
Let's analyze a situation and justify this analysis method: consider an object being launched from ground level to an altitude of 10,000 meters, roughly the cruising altitude of most jet liners, and far above our everyday experiences on Earth's surface. Compare the gravitational acceleration of the object at Earth's surface (the radius of Earth is about r_E=6.37\times10^6mrE=6.37×106m) to the acceleration value at the 10,000 meter altitude by determining the following ratio: g10,000m/gsurface
The International Space Station (ISS) has a mass of about 441,000 kg and orbits at a height of about 4.0 x 105 meters above the surface of Earth. If the average U.S. household uses about 40 billion joules (4.0 x 1010 J) of energy in a year, how many households could be powered for a year by the gravitational potential energy stored in the ISS? The height of the ISS above Earth's surface is small enough that you can still use mgh as a reasonable approximation to calculate the gravitational potential energy.
A comet orbits a star of mass M = 10^30 kg on an elliptical orbit. At apoapsis(furthest point from the star), the comet is d = 10^15 m from the star, and travels with a speed of v = 10 km/s. What is the comet’s speed at periapsis (closest point to the star) where it is at a distance of d = 10^12 m. Derive a general equation for the comet’s speed, v, before calculating the specific value
Chapter 11 Solutions
Physics for Scientists and Engineers: Foundations and Connections
Ch. 11.1 - Forensic Science Forensic science is the...Ch. 11.2 - Why does a coach instruct a gymnast to bend her...Ch. 11.3 - When two objects collide, the impulse exerted on...Ch. 11.3 - Prob. 11.4CECh. 11.5 - If a spacecraft is headed for the outer solar...Ch. 11.6 - The cue ball hits the eight-ball in a game of pool...Ch. 11 - When a spacecraft collides with a planet, it is...Ch. 11 - When a person feels that he is about to fall, he...Ch. 11 - A tall man walking at 1.25 m/s accidentally bumps...Ch. 11 - Prob. 4PQ
Ch. 11 - A basketball of mass m = 625 g rolls off the hoops...Ch. 11 - Prob. 6PQCh. 11 - Sven hits a baseball (m = 0.15 kg). He applies an...Ch. 11 - Prob. 8PQCh. 11 - Prob. 9PQCh. 11 - In a laboratory, a cart collides with a wall and...Ch. 11 - Prob. 11PQCh. 11 - A Show that Equation 11.4 (the impulsemomentum...Ch. 11 - A crate of mass M is initially at rest on a level,...Ch. 11 - Prob. 14PQCh. 11 - Two pucks in a laboratory are placed on an air...Ch. 11 - A truck collides with a small, empty parked car....Ch. 11 - Prob. 17PQCh. 11 - Prob. 18PQCh. 11 - A skater of mass m standing on ice throws a stone...Ch. 11 - A skater of mass 45.0 kg standing on ice throws a...Ch. 11 - Prob. 21PQCh. 11 - In a laboratory experiment, 1 a block of mass M is...Ch. 11 - Ezra (m = 25.0 kg) has a tire swing and wants to...Ch. 11 - A suspicious physics student watches a stunt...Ch. 11 - A 2.45-kg ball is shot into a 0.450-kg box that is...Ch. 11 - Prob. 26PQCh. 11 - Prob. 27PQCh. 11 - Prob. 28PQCh. 11 - A dart of mass m is fired at and sticks into a...Ch. 11 - A dart of mass m = 10.0 g is fired at and sticks...Ch. 11 - A bullet of mass m = 8.00 g is fired into and...Ch. 11 - Prob. 32PQCh. 11 - A bullet of mass m is fired into a ballistic...Ch. 11 - Prob. 34PQCh. 11 - One object (m1 = 0.200 kg) is moving to the right...Ch. 11 - Prob. 36PQCh. 11 - Prob. 37PQCh. 11 - Prob. 38PQCh. 11 - Two objects collide head-on (Fig. P11.39). The...Ch. 11 - Initially, ball 1 rests on an incline of height h,...Ch. 11 - Initially, ball 1 rests on an incline of height h,...Ch. 11 - In an attempt to produce exotic new particles, a...Ch. 11 - Pendulum bob 1 has mass m1. It is displaced to...Ch. 11 - Prob. 44PQCh. 11 - Prob. 45PQCh. 11 - Prob. 46PQCh. 11 - Prob. 47PQCh. 11 - Prob. 48PQCh. 11 - Two skateboarders, with masses m1 = 75.0 kg and m2...Ch. 11 - In a laboratory experiment, an electron with a...Ch. 11 - In Figure P11.51, a cue ball is shot toward the...Ch. 11 - A proton with an initial speed of 2.00 108 m/s in...Ch. 11 - A football player of mass 95 kg is running at a...Ch. 11 - Two bumper cars at the county fair are sliding...Ch. 11 - Two bumper cars at the county fair are sliding...Ch. 11 - Prob. 56PQCh. 11 - N A bomb explodes into three pieces A, B, and C of...Ch. 11 - Prob. 58PQCh. 11 - An object of mass m = 4.00 kg that is moving with...Ch. 11 - A wooden block of mass M is initially at rest at...Ch. 11 - Prob. 61PQCh. 11 - Prob. 62PQCh. 11 - In an experiment designed to determine the...Ch. 11 - From what might be a possible scene in the comic...Ch. 11 - Prob. 65PQCh. 11 - Two pucks in a laboratory are placed on an air...Ch. 11 - Assume the pucks in Figure P11.66 stick together...Ch. 11 - Prob. 68PQCh. 11 - Prob. 69PQCh. 11 - A ball of mass 50.0 g is dropped from a height of...Ch. 11 - Prob. 71PQCh. 11 - A pendulum consists of a wooden bob of mass M...Ch. 11 - Three runaway train cars are moving on a...Ch. 11 - Prob. 74PQCh. 11 - Rutherford fired a beam of alpha particles (helium...Ch. 11 - Prob. 76PQCh. 11 - Prob. 77PQCh. 11 - February 3, 2009, was a very snowy day along...Ch. 11 - A cart filled with sand rolls at a speed of 1.0...Ch. 11 - Prob. 80PQCh. 11 - Prob. 81PQCh. 11 - Prob. 82PQCh. 11 - Prob. 83PQCh. 11 - Prob. 84PQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A rocket is fired ‘vertically’ from the surface of mars with a speed of 2 km s-1. If 20% of its initial energy is lost due to martian atmospheric resistance, how far will the rocket go from the surface of mars before returning to it ? Mass of mars = 6.4×1023 kg; radius of mars = 3395 km; G = 6.67×10-11 N m2 kg-2.arrow_forwardA satellite is traveling around a planet in a circular orbit with radius R. It moves in a constant speed of v = 1.1 × 104 m/s. The mass of the planet is M = 6.04 × 1024 kg. The mass of the satellite is m = 1.2 × 103 kg. First, find an expression for the gravitational potential energy PE in terms of G, M, m, and R. a)Calculate the value of PE in joules. b)Enter an expression for the total energy E of the satellite in terms of m and v. c)Calculate the value of the total energy E in joules.arrow_forwardOne way astrophysicists have identifi ed “extrasolar” planets orbiting distant stars is by observing redshifts or blueshifts in the star’s spectrum due to the fact that he star and planet each revolve around their common center of mass. Consider a star the size of our sun (mass 1.99 x 1030 kg), with a planet the size of Jupiter(1.90 x 1027 kg) in a circular orbit of radius 7.79 x 1011 m and a period of 11.9 years. (a) Find the speed of the star revolving around the system’s center of mass. (b) Assume that Earth is in the planet’s orbital plane, so that at one point in its orbit the star is moving directly toward Earth, and at the opposite point it moves directly away from Earth. How much is 550-nm light redshifted and blueshifted at those two extreme points?arrow_forward
- Two lonely soccer balls in outer space feel nothing but their mutual attraction. In the beginning they have a distance of 20 km and a mass of 440 g with a diameter of 22 cm. What is each ball’s momentum just before they collide as potential energy is converted into kinetic energy?How large are the accelerations of the balls when they start moving and just before they collide? Find the acceleration as a function of distance a(r). Compute the times they would travel before they collide according to the initial and final accelerations. How large are the balls’ velocities just after the collision if the collision was elastic and if the collision was (fully) inelastic?Γ = 6.67 ∙ 10^−11 m^3 /kg∙s^2arrow_forward(D Page view A Read aloud V Draw y Highlight Erasearrow_forwardA satellite is traveling around a planet in a circular orbit with radius R. It moves in a constant speed of v = 1.1 × 104 m/s. The mass of the planet is M = 6.04 × 1024 kg. The mass of the satellite is m = 1.2 × 103 kg. a)Enter an expression for the kinetic energy KE of the satellite in terms of m and v. Calculate the value of KE in joules. b)Enter an expression for the magnitude of the gravitational force F in terms of M, R, m and the gravitational constant G. c)Enter an expression for the centripetal acceleration of the satellite ac in terms of the speed of the satellite, v, and R.arrow_forward
- A 5.00 kg satellite is launched from the north pole into a circular orbit 800 km above the surface of the earth. How much energy is required to achieve this orbit? (The following set of questions will guide you to the answer.) Me = 5.98x1024 kg; Re = 6.37x106 m. G = 6.67x10-11 N m2/ kg2. Note: The problem specifies that the satellite is being launched from the north pole so that we can ignore the initial circular motion and initial kinetic energy as it rotates once every day. In reality, space agencies choose to launch rockets from southern latitudes to take advantage of the initial velocity they have due to this motion. a. calculate the change in gravitational potential energy. (Give your answer in MJ.) b. What is the gravitational force on the satellite? (Give your answer in N.) c. What is the velocity of the satellite? (Give your answer in m/s.) Note: The weight force is equal to m v2/R. d. What is the kinetic energy in this orbit? (Give your answer in MJ.) e. how much total energy…arrow_forwardThe class I'm taking is physics for scientists and engineers! I am completely stuck. Need help. I have attached the problem. Please view both attachments before answering. Please write step-by-step solution so I can fully understand.arrow_forwardThe star Sirus A has a mass of 2.06 MO and a radius of 1.71 RO, where M0 is the mass of the Sun (1.988 x 1030 kg) and RO is the radius of the Sun (6.96 x 105 km). (a) Sketch the gravitational potential of Sirus A, which a hydrogen particle would experience at distances where r is greater than the radius of Sirus A. (b) Calculate the gravitational potential energy of the particle-star system when the hydrogen particle has reached a distance of 10 RO. Note the atomic mass of hydrogen is 1.0079 amu.arrow_forward
- satellite revolves around the earth in a circular orbit with a velocity “v”. What is the total energy of the satellite? Let “m” be the mass of the satellite. a) – (m*v2)/2 b) (m*v2)/2 c) (3*m*v2)/2 d) – (m*v2)arrow_forwardThe escape velocity from a massive object is the speed needed to reach an infinite distance from it and have just slowed to a stop, that is, to have just enough kinetic energy to climb out of the gravitational potential well and have none left. You can find the escape velocity by equating the total kinetic and gravitational potential energy to zero E = = muesc - GmM/r=0 Vesc = √2GM/r where G is Newton's constant of gravitation, M is the mass of the object from which the escape is happening, and r is its radius. This is physics you have seen in the first part of the course, and you should be able to use it to find an escape velocity from any planet or satellite. For the Earth, for example the escape velocity is about 11.2 km/s, and for the Moon it is 2.38 km/s. A very important point about escape velocity: it does not depend on what is escaping. A spaceship or a molecule must have this velocity or more away from the center of the planet to be free of its gravity, 1. In the atmosphere of…arrow_forwardOften in designing orbits for satellites, people use what is termed a "gravitational slingshot effect." The idea is as follows: A satellite of mass ms and speed vsi circles around a planet of mass mp that is moving with speed vpi in the opposite direction. See the diagram below: Although the satellite never touches the planet, this interaction can still be treated as a collision because of the gravitational interaction between the planet and satellite during the slingshot. Since gravity is a conservative force, the collision is elastic.Use an x-axis with positive pointing to the right.Solve for the unknowns below algebraically first, then use the following values for the parameters. mp = 4.60E+24 kgms = 1440 kgvsix = 3.740E+3 m/svpix = -2.20E+3 m/s Solve for the final velocity of the satellite after the collision. Find the final velocity of the planet.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning