Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 11, Problem 15PQ
Two pucks in a laboratory are placed on an air table. Puck 1 has twice the mass of puck 2. They are pushed toward each other and strike in a head-on collision. Initially, puck 2 is twice as fast as puck 1. a. What is the total momentum before the collision? b. What is the center-of-mass velocity before the collision? c. If the pucks are initially 2.70 m apart, how far did puck 1 move before the collision?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 11 Solutions
Physics for Scientists and Engineers: Foundations and Connections
Ch. 11.1 - Forensic Science Forensic science is the...Ch. 11.2 - Why does a coach instruct a gymnast to bend her...Ch. 11.3 - When two objects collide, the impulse exerted on...Ch. 11.3 - Prob. 11.4CECh. 11.5 - If a spacecraft is headed for the outer solar...Ch. 11.6 - The cue ball hits the eight-ball in a game of pool...Ch. 11 - When a spacecraft collides with a planet, it is...Ch. 11 - When a person feels that he is about to fall, he...Ch. 11 - A tall man walking at 1.25 m/s accidentally bumps...Ch. 11 - Prob. 4PQ
Ch. 11 - A basketball of mass m = 625 g rolls off the hoops...Ch. 11 - Prob. 6PQCh. 11 - Sven hits a baseball (m = 0.15 kg). He applies an...Ch. 11 - Prob. 8PQCh. 11 - Prob. 9PQCh. 11 - In a laboratory, a cart collides with a wall and...Ch. 11 - Prob. 11PQCh. 11 - A Show that Equation 11.4 (the impulsemomentum...Ch. 11 - A crate of mass M is initially at rest on a level,...Ch. 11 - Prob. 14PQCh. 11 - Two pucks in a laboratory are placed on an air...Ch. 11 - A truck collides with a small, empty parked car....Ch. 11 - Prob. 17PQCh. 11 - Prob. 18PQCh. 11 - A skater of mass m standing on ice throws a stone...Ch. 11 - A skater of mass 45.0 kg standing on ice throws a...Ch. 11 - Prob. 21PQCh. 11 - In a laboratory experiment, 1 a block of mass M is...Ch. 11 - Ezra (m = 25.0 kg) has a tire swing and wants to...Ch. 11 - A suspicious physics student watches a stunt...Ch. 11 - A 2.45-kg ball is shot into a 0.450-kg box that is...Ch. 11 - Prob. 26PQCh. 11 - Prob. 27PQCh. 11 - Prob. 28PQCh. 11 - A dart of mass m is fired at and sticks into a...Ch. 11 - A dart of mass m = 10.0 g is fired at and sticks...Ch. 11 - A bullet of mass m = 8.00 g is fired into and...Ch. 11 - Prob. 32PQCh. 11 - A bullet of mass m is fired into a ballistic...Ch. 11 - Prob. 34PQCh. 11 - One object (m1 = 0.200 kg) is moving to the right...Ch. 11 - Prob. 36PQCh. 11 - Prob. 37PQCh. 11 - Prob. 38PQCh. 11 - Two objects collide head-on (Fig. P11.39). The...Ch. 11 - Initially, ball 1 rests on an incline of height h,...Ch. 11 - Initially, ball 1 rests on an incline of height h,...Ch. 11 - In an attempt to produce exotic new particles, a...Ch. 11 - Pendulum bob 1 has mass m1. It is displaced to...Ch. 11 - Prob. 44PQCh. 11 - Prob. 45PQCh. 11 - Prob. 46PQCh. 11 - Prob. 47PQCh. 11 - Prob. 48PQCh. 11 - Two skateboarders, with masses m1 = 75.0 kg and m2...Ch. 11 - In a laboratory experiment, an electron with a...Ch. 11 - In Figure P11.51, a cue ball is shot toward the...Ch. 11 - A proton with an initial speed of 2.00 108 m/s in...Ch. 11 - A football player of mass 95 kg is running at a...Ch. 11 - Two bumper cars at the county fair are sliding...Ch. 11 - Two bumper cars at the county fair are sliding...Ch. 11 - Prob. 56PQCh. 11 - N A bomb explodes into three pieces A, B, and C of...Ch. 11 - Prob. 58PQCh. 11 - An object of mass m = 4.00 kg that is moving with...Ch. 11 - A wooden block of mass M is initially at rest at...Ch. 11 - Prob. 61PQCh. 11 - Prob. 62PQCh. 11 - In an experiment designed to determine the...Ch. 11 - From what might be a possible scene in the comic...Ch. 11 - Prob. 65PQCh. 11 - Two pucks in a laboratory are placed on an air...Ch. 11 - Assume the pucks in Figure P11.66 stick together...Ch. 11 - Prob. 68PQCh. 11 - Prob. 69PQCh. 11 - A ball of mass 50.0 g is dropped from a height of...Ch. 11 - Prob. 71PQCh. 11 - A pendulum consists of a wooden bob of mass M...Ch. 11 - Three runaway train cars are moving on a...Ch. 11 - Prob. 74PQCh. 11 - Rutherford fired a beam of alpha particles (helium...Ch. 11 - Prob. 76PQCh. 11 - Prob. 77PQCh. 11 - February 3, 2009, was a very snowy day along...Ch. 11 - A cart filled with sand rolls at a speed of 1.0...Ch. 11 - Prob. 80PQCh. 11 - Prob. 81PQCh. 11 - Prob. 82PQCh. 11 - Prob. 83PQCh. 11 - Prob. 84PQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) At what speed would a 2.00104 -kg airplane have to fly to have a momentum of 1.60109kgm/s (the same as the ship's momentum in the problem above)? (b) What is the plane's momentum when it is taking off at a speed of 60.0 m/s? (c) If the ship is an aircraft carrier that launches these airplanes with a catapult, discuss the implications of your answer to (b) as it relates to recoil effects of the catapult on the ship.arrow_forwardIn a laboratory, a cart collides with a wall and bounces back. Figure P11.10 shows a graph of the force exerted by the wall versus time. a. Find the impulse exerted by the wall on the cart. b. What is the average force exerted by the wall on the cart? c. If the cart has a mass of 0.448 kg, what is its change in velocity? d. Make a sketch of the situation. Include a coordinate system and explain the significance of the signs in parts (a) through (c). FIGURE P11.10arrow_forwardThe space shuttle uses its thrusters with an exhaust velocity of 4440 m/s. The shuttle is initially at rest in space and accelerates to a final speed of 1.00 km/s. a. What percentage of the initial mass of the shuttle (including the full fuel tank) must be ejected to reach that speed? b. If the mass of the shuttle and fuel is initially 1.85 106 kg, how much fuel is expelled?arrow_forward
- In a head-on, inelastic collision, a 4,000-kg truck going 10 m/s east strikes a 1,000-kg car going 20 m/s west. (a) What is the speed and direction of the wreckage? (b) How much kinetic energy was lost in the Collision?arrow_forwardA soccer player runs up behind a 0.450-kg soccer ball traveling at 3.20 m/s and kicks it in the same direction as it is moving, increasing its speed to 12.8 m/s. (a) What is the change in the magnitude of the balls momentum? (b) What magnitude impulse did the soccer player deliver to the ball? (c) What magnitude impulse would be required to kick the ball in the opposite direction at 12.8 m/s, instead? (See Section 6.1.)arrow_forwardEstimate the magnitude of the momentum of a car on the highway.arrow_forward
- Problems 44 and 45 are paired. C A model rocket is shot straight up. As it reaches the highest point in its trajectory, it explodes in midair into three pieces with velocities indicated by the arrows in Figure P10.44, as viewed from directly above the explosion. Rank the mass of each piece in order from smallest to largest and justify your answer. FIGURE P10.44 Problems 44 and 45.arrow_forwardA crate of mass M is initially at rest on a frictionless, level table. A small block of mass m (m M) moves toward the crate as shown in Figure P10.31. Later, the block and crate are stuck together and are moving with some final speed. The momentum of the blockcrate system is the same both before and after the collision. Is the magnitude of the change in momentum of the crate greater than, less than, or equal to the magnitude of the change in the momentum of the block? Explain. FIGURE P10.31arrow_forwardA truck collides with a small, empty parked car. Explain your answers to the parts below. a. Compare the force exerted by the truck on the car with the force exerted by the car on the truck. b. Compare the impulse exerted by the truck on the car with the impulse exerted by the car on the truck. c. Compare the change in the trucks momentum with the change in the cars momentum.arrow_forward
- N A bomb explodes into three pieces A, B, and C of equal mass. Piece A flies with a speed of 40.0 m/s, and piece B with a speed of 30.0 m/s at an angle of 90° relative to the direction of A as shown in Figure P11.57. Determine the speed of piece C and the direction of its velocity relative to the direction of piece A.arrow_forwardA model rocket is shot straight up and explodes at the top of its trajectory into three pieces as viewed from above and shown in Figure P10.44. The masses of the three pieces are mA = 100.0 g, mB = 20.0 g, and mC = 30.0 g. Immediately after the explosion, piece A is traveling at 1.50 m/s, and piece B is traveling at 7.00 m/s in a direction 30 below the negative x axis as shown. What is the velocity of piece C? FIGURE P10.44 Problems 44 and 45. 45. We can use the conservation of momentum (Eq. 10.9). The total initial momentum is zero, so the sum of all the final momenta should be zero. mAvAf+mBvBf+mCvCf=0 This velocities for A and B can be expressed as vectors. vAf=1.50jm/svBf=(7.00im/s)cos30(7.00jm/s)sin30=(6.06i3.50j)m/s We can now solve the momentum equation. (100.0g)(1.50jm/s)+(20.0g)(6.06i3.50j)m/s+(30.0g)vCf=0vCf=(4.04i2.67j)m/s The velocity of piece C is down and to the right as expected.arrow_forwardA 5-kg cart moving to the right with a speed of 6 m/s collides with a concrete wall and rebounds with a speed of 2 m/s. What is the change in momentum of the cart? (a) 0 (b) 40 kg m/s (c) 40 kg m/s (d) 30 kg m/s (e) 10 kg m/sarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Impulse Derivation and Demonstration; Author: Flipping Physics;https://www.youtube.com/watch?v=9rwkTnTOB0s;License: Standard YouTube License, CC-BY