Engineering Fundamentals: An Introduction to Engineering
Engineering Fundamentals: An Introduction to Engineering
6th Edition
ISBN: 9780357112311
Author: Saeed Moaveni
Publisher: Cengage Learning US
bartleby

Concept explainers

Question
Book Icon
Chapter 11, Problem 35P

(a)

To determine

Find the amount of radiation emitted from a hot pavement in Arizona.

(a)

Expert Solution
Check Mark

Answer to Problem 35P

In SI units, The amount of radiation emitted from a hot pavement in Arizona is 493.7W and in U.S customary units, it is 1684.7Btuh.

Explanation of Solution

Given data:

Area of the surface, A=1m2.

Emissivity of the surface, ε=0.8.

Temperature of the surface, Ts=50°C.

Formula used:

The relationship between degree Celsius (°C) and Kelvin is,

T(K)=T(Co)+273 (1)

Here,

T(°C) is the temperature in degree Celsius,

T(K) is the temperature in Kelvin.

The formula for the amount of radiant energy emitted by a surface is,

q=εσATs4 (2)

Here,

ε is the emissivity of the surface,

σ is the Boltzmann constant,

A is the area of the surface,

Ts is the temperature of the surface.

Calculation:

Substitute 50°C for T(°C) in equation (1) to find the surface temperature in Kelvin,

Ts(K)=50+273=323K

Substitute 0.8 for ε, 5.67×108Wm2K4 for σ, 1m2 for A, and 323K for Ts in equation (2) to find q,

q=(0.8)(5.67×108Wm2K4)(1m2)(323K)4=0.8×5.67×108×(323)4W=493.7W

Do the unit conversion in above result,

q=493.7W[1W=3.4123Btuh]=(493.7W)(3.4123Btuh1W)=1684.7Btuh

Therefore, in SI units, The amount of radiation emitted from a hot pavement in Arizona is 493.7W and in U.S customary units, it is 1684.7Btuh.

Conclusion:

Hence, in SI units, The amount of radiation emitted from a hot pavement in Arizona is 493.7W and in U.S customary units, it is 1684.7Btuh.

(b)

To determine

Find the amount of radiated emitted from a hood of a car.

(b)

Expert Solution
Check Mark

Answer to Problem 35P

In SI units, The amount of radiation emitted from a hood of a car is 489.8W and in U.S customary units, it is 1671.2Btuh.

Explanation of Solution

Given data:

Area of the surface, A=1m2.

Emissivity of the surface, ε=0.9.

Temperature of the surface, Ts=40°C.

Calculation:

Substitute 40°C for T(Co) in equation (1) to find the surface temperature in Kelvin,

Ts(K)=40+273=313K

Substitute 0.9 for ε, 5.67×108Wm2K4 for σ, 1m2 for A, and 313K for Ts in equation (2) to find q,

q=(0.9)(5.67×108Wm2K4)(1m2)(313K)4=0.8×5.67×108×(313)4W=489.8W

Do the unit conversion in above result,

q=498.8W            [1W=3.4123Btuh]=(498.8W)(3.4123Btuh1W)=1671.2Btuh

Therefore, in SI units, the amount of radiation emitted from a hood of a car is 489.8W and in U.S customary units, it is 1671.2Btuh.

Conclusion:

Hence, in SI units, the amount of radiation emitted from a hood of a car is 489.8W and in U.S customary units, it is 1671.2Btuh.

(c)

To determine

Find the amount of radiated emitted from a sunbather.

(c)

Expert Solution
Check Mark

Answer to Problem 35P

In SI units, The amount of radiation emitted from a sunbather is 477.4W and in U.S customary units, it is 1629.0Btuh.

Explanation of Solution

Given data:

Area of the surface, A=1m2.

Emissivity of the surface, ε=0.9.

Temperature of the surface, Ts=38°C.

Calculation:

Substitute 38°C for T(°C) in equation (1) to find the surface temperature in Kelvin,

Ts(K)=38+273=311K

Substitute 0.9 for ε, 5.67×108Wm2K4 for σ, 1m2 for A, and 311K for Ts in equation (2) to find q,

q=(0.9)(5.67×108Wm2K4)(1m2)(311K)4=0.9×5.67×108×(311)4W=477.4W

Do the unit conversion in above result,

q=477.4W[1W=3.4123Btuh]=(477.4W)(3.4123Btuh1W)=1629.0Btuh

Therefore, in SI units, the amount of radiation emitted from a sunbather is 477.4W and in U.S customary units, it is 1629.0Btuh.

Conclusion:

Hence, in SI units, the amount of radiation emitted from a sunbather is 477.4W and in U.S customary units, it is 1629.0Btuh.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The water in a hot water heating system is heated to 76°C. What is thistemperature reading on a Fahrenheit thermometer?
Calculate the amount of radiation emitted for a unit surface (1 m2) for the following situations: (a) a hot pavement in Arizona at 50 °C (122 °F) and  0.8, (b) a hood of a car at 40 °C (104 °F) and 0.9, and (c) a sunbather at 38 °C (100 °F) and 0.9. Express your answers in both SI and U.S. Customary units.
4. Assume that half of the light emitted by a 100 W incandescent lamp (1750 lumens) illuminates a 100 ft2 surface. a. Determine the average illuminance of the surface in foot-candles. b. Determine the average illuminance of the surface in lux. c. What would the average illuminance be if only half of the light illuminated the surface?

Chapter 11 Solutions

Engineering Fundamentals: An Introduction to Engineering

Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Sustainable Energy
Civil Engineering
ISBN:9781337551663
Author:DUNLAP, Richard A.
Publisher:Cengage,
Text book image
Engineering Fundamentals: An Introduction to Engi...
Civil Engineering
ISBN:9781305084766
Author:Saeed Moaveni
Publisher:Cengage Learning