University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11, Problem 11.87P
(a)
To determine
To draw: The free body diagram of the bar.
(b)
To determine
To solve: The equation for
(c)
To determine
To plot: The graph
(d)
To determine
The
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 1.90-m-long barbell has a 21.0 kg weight on its left end and a 32.0 kg weight on its right end.
If you ignore the weight of the bar itself, how far from the left end of the barbell is the center of gravity?
Express your answer to three significant figures and include the appropriate units.
Where is the center of gravity if the 9.00 kg mass of the barbell itself is taken into account?
Express your answer to three significant figures and include the appropriate units.
A person who weighs 775 N supports himself on the ball of one foot. The normal force N = 775 N pushes up on the ball of the foot on one side of the ankle joint, while the Achilles tendon pulls up on the foot on the other side of the joint. The center of gravity of the person is located right above the tibia.
What is the tension in the Achilles tendon? If the force acting is upward, enter a positive value and if the force acting is downward, enter a negative value.
A P8.11
SL:
dir
Find the x and y coordinates of the center of gravity of a 4.00 ft by 8.00 ft uniform sheet of
plywood with the upper right quadrant removed as shown in the following figure. Hint: The mass
of any segment of the plywood sheet is proportional to the area of that segment.
y (ft)
4.00
2.00
x(ft)
0-
0
4.00 6.00 8.00
2.00
Chapter 11 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 11.1 - Which situation satisfies both the first and...Ch. 11.2 - A rock is attached to the left end of a uniform...Ch. 11.3 - A metal advertising sign (weight w) for a...Ch. 11.4 - A copper rod of cross-sectional area 0.500 cm2 and...Ch. 11.5 - While parking your car, you accidentally back into...Ch. 11 - Does a rigid object in uniform rotation about a...Ch. 11 - (a) Is it possible for an object to be in...Ch. 11 - Prob. 11.3DQCh. 11 - Does the center of gravity of a solid body always...Ch. 11 - Prob. 11.5DQ
Ch. 11 - You are balancing a wrench by suspending it at a...Ch. 11 - You can probably stand flatfooted on the floor and...Ch. 11 - Prob. 11.8DQCh. 11 - An object consists of a ball of weight W glued to...Ch. 11 - Prob. 11.10DQCh. 11 - Prob. 11.11DQCh. 11 - In pioneer days, when a Conestoga wagon was stuck...Ch. 11 - The mighty Zimbo claims to have leg muscles so...Ch. 11 - Why is it easier to hold a 10-kg dumbbell in your...Ch. 11 - Certain features of a person, such as height and...Ch. 11 - During pregnancy, women often develop back pains...Ch. 11 - Why is a tapered water glass with a narrow base...Ch. 11 - Prob. 11.18DQCh. 11 - A uniform beam is suspended horizontally and...Ch. 11 - If a metal wire has its length doubled and its...Ch. 11 - A metal wire of diameter D stretches by 0.100 mm...Ch. 11 - Prob. 11.22DQCh. 11 - The material in human bones and elephant bones is...Ch. 11 - There is a small bui appreciable amount of elastic...Ch. 11 - When rubber mounting blocks are used to absorb...Ch. 11 - A 0.120-kg. 50.0-cm-long uniform bar has a small...Ch. 11 - Prob. 11.2ECh. 11 - A uniform rod is 2.00 m long and has mass 1.80 kg....Ch. 11 - A uniform 300-N trapdoor in a floor is hinged at...Ch. 11 - Raising a Ladder. A ladder carried by a fire truck...Ch. 11 - Two people are carrying a uniform wooden board...Ch. 11 - Two people carry a heavy electric motor by placing...Ch. 11 - A 60.0-cm. uniform. 50.0-N shelf is supported...Ch. 11 - A 350-N, uniform. 1.50-m bar is suspended...Ch. 11 - A uniform ladder 5.0 m long rests against a...Ch. 11 - A diving board 3.00 m long is supported at a point...Ch. 11 - A uniform aluminum beam 9.00 m long, weighing 300...Ch. 11 - Find the tension T in each cable and the magnitude...Ch. 11 - The horizontal beam in Fig. E11.14 weighs 190 N....Ch. 11 - The boom shown in Fig. E11.15 weighs 2600 N and is...Ch. 11 - Suppose that you can lift no more than 650 N...Ch. 11 - A 9.00-m-long uniform beam is hinged to a vertical...Ch. 11 - A 15,000-N crane pivots around a friction-free...Ch. 11 - A 3.00-m-long. 190-N, uniform rod at the zoo is...Ch. 11 - A nonuniform beam 4.50 m long and weighing 1.40 kN...Ch. 11 - A Couple. Two forces equal in magnitude and...Ch. 11 - BIO A Good Workout. You are doing exercises on a...Ch. 11 - BIO Neck Muscles. A student bends her head at 40.0...Ch. 11 - BIO Biceps Muscle. A relaxed biceps muscle...Ch. 11 - A circular steel wire 2.00 m long must stretch no...Ch. 11 - Two circular rods, one steel and the other copper,...Ch. 11 - A metal rod that is 4.00 m long and 0.50 cm2 in...Ch. 11 - Stress on a Mountaineers Rope. A nylon rope used...Ch. 11 - In constructing a large mobile, an artist hangs an...Ch. 11 - A vertical, solid steel post 25 cm in diameter and...Ch. 11 - BIO Compression of Human Bone. The bulk modulus...Ch. 11 - A solid gold bar is pulled up from the hold of the...Ch. 11 - A specimen of oil having an initial volume of 600...Ch. 11 - In the Challenger Deep of the Marianas Trench, the...Ch. 11 - A copper cube measures 6.00 cm on each side. The...Ch. 11 - A square steel plate is 10.0 cm on a side and...Ch. 11 - In lab tests on a 9.25-cm cube of a certain...Ch. 11 - A brass wire is to withstand a tensile force of...Ch. 11 - In a materials testing laboratory, a metal wire...Ch. 11 - A 4.0-m-long steel wire has a cross-sectional area...Ch. 11 - CP A steel cable with cross-sectional area 3.00...Ch. 11 - A door 1.00 m wide and 2.00 m high weighs 330 N...Ch. 11 - A box of negligible mass rests at the lett end of...Ch. 11 - Sir Lancelot rides slowly out of the castle at...Ch. 11 - Mountain Climbing. Mountaineers often use a rope...Ch. 11 - A uniform, 8.0-m, 1150-kg beam is hinged to a wall...Ch. 11 - A uniform, 255.N rod that is 2.00 m long carries a...Ch. 11 - A claw hammer is used to pull a nail out of a...Ch. 11 - You open a restaurant and hope to entice customers...Ch. 11 - End A of the bar AB in Fig. P11.50 rests on a...Ch. 11 - BIO Supporting a Broken Leg. A therapist tells a...Ch. 11 - A Truck on a Drawbridge. A loaded cement mixer...Ch. 11 - BIO Leg Raises. In a simplified version of the...Ch. 11 - BIO Pumping Iron. A 72.0-kg weightlifter doing arm...Ch. 11 - Prob. 11.55PCh. 11 - You are asked to design the decorative mobile...Ch. 11 - A uniform, 7.5-m-long beam weighing 6490 N is...Ch. 11 - CP A uniform drawbridge must be held at a 37 angle...Ch. 11 - BIO Tendon-Stretching Exercises. As part of an...Ch. 11 - (a) In Fig. P11.60 a 6.00-m-loog, uniform beam is...Ch. 11 - A uniform, horizontal flagpole 5.00 m long with a...Ch. 11 - A holiday decoration consists of two shiny glass...Ch. 11 - BIO Downward-Facing Dog. The yoga exercise...Ch. 11 - A uniform metal bar that is 8.00 m long and has...Ch. 11 - A worker wants to turn over a uniform. 1250-N,...Ch. 11 - One end of a uniform meter stick is placed against...Ch. 11 - Two friends are carrying a 200-kg crate up a...Ch. 11 - BIO Forearm. In the human arm, the forearm and...Ch. 11 - BIO CALC Refer to the discussion of holding a...Ch. 11 - In a city park a nonuniform wooden beam 4.00 m...Ch. 11 - You are a summer intern for an architectural firm....Ch. 11 - You are trying to raise a bicycle wheel of mass m...Ch. 11 - The Farmyard Gate. A gate 4.00 m wide and 2.00 m...Ch. 11 - If you put a uniform block at the edge of a table,...Ch. 11 - Two uniform, 75.0-g marbles 2.00 cm in diameter...Ch. 11 - Two identical, uniform beams weighing 260 N each...Ch. 11 - An engineer is designing a conveyor system for...Ch. 11 - A weight W is supported by attaching it to a...Ch. 11 - A garage door is mounted on an overhead rail (Fig....Ch. 11 - Pyramid Guilders. Ancient pyramid builders are...Ch. 11 - CP A 12.0-kg mass, fastened to the end of an...Ch. 11 - Hookes Law for a Wire. A wire of length l0 and...Ch. 11 - A 1.05-m-long rod of negligible weight is...Ch. 11 - CP An amusement park ride consists of...Ch. 11 - CP BIO Stress on the Shin Bone. The compressive...Ch. 11 - DATA You are to use a long, thin wire to build a...Ch. 11 - Prob. 11.87PCh. 11 - DATA You are a construction engineer working on...Ch. 11 - Two ladders, 4.00 m and 3.00 m long, are hinged at...Ch. 11 - Knocking Over a Post. One end of a post weighing...Ch. 11 - An angler hangs a 4.50-kg fish from a vertical...Ch. 11 - BIO TORQUES AND TUG-OF-WAR. In a study of the...Ch. 11 - If he leans slightly farther back (increasing the...Ch. 11 - BIO TORQUES AND TUG-OF-WAR. In a study of the...Ch. 11 - BIO TORQUES AND TUG-OF-WAR. In a study of the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A person carries a plank of wood 2.00 m long with one hand pushing down on it at one end with a force F1 and the other hand holding it up at .500 m from the end of the plank with force F2. If the plank has a mass of 20.0 kg and its center of gravity is at the middle of the plank, what are the magnitudes of the forces F1 and F2?arrow_forwardFind the net torque on the wheel in Figure P10.23 about the axle through O, taking a = 10.0 cm and b = 25.0 cm. Figure P10.23arrow_forwardA uniform beam resting on two pivots has a length L = 6.00 m and mass M = 90.0 kg. The pivot under the left end exerts a normal force n1 on the beam, and the second pivot located a distance = 4.00 m from the left end exerts a normal force n2. A woman of mass m = 55.0 kg steps onto the left end of the beam and begins walking to the right as in Figure P10.28. The goal is to find the womans position when the beam begins to tip. (a) What is the appropriate analysis model for the beam before it begins to tip? (b) Sketch a force diagram for the beam, labeling the gravitational and normal forces acting on the beam and placing the woman a distance x to the right of the first pivot, which is the origin. (c) Where is the woman when the normal force n1 is the greatest? (d) What is n1 when the beam is about to tip? (e) Use Equation 10.27 to find the value of n2 when the beam is about to tip. (f) Using the result of part (d) and Equation 10.28, with torques computed around the second pivot, find the womans position x when the beam is about to tip. (g) Check the answer to part (e) by computing torques around the first pivot point. Figure P10.28arrow_forward
- A stepladder of negligible weight is constructed as shown in Figure P10.73, with AC = BC = ℓ. A painter of mass m stands on the ladder a distance d from the bottom. Assuming the floor is frictionless, find (a) the tension in the horizontal bar DE connecting the two halves of the ladder, (b) the normal forces at A and B, and (c) the components of the reaction force at the single hinge C that the left half of the ladder exerts on the right half. Suggestion: Treat the ladder as a single object, but also treat each half of the ladder separately. Figure P10.73 Problems 73 and 74.arrow_forwardA stepladder of negligible weight is constructed as shown in Figure P10.73, with AC = BC = = 4.00 m. A painter of mass m = 70.0 kg stands on the ladder d = 3.00 m from the bottom. Assuming the floor is frictionless, find (a) the tension in the horizontal bar DE connecting the two halves of the ladder, (b) the normal forces at A and B, and (c) the components of the reaction force at the single hinge C that the left half of the ladder exerts on the right half. Suggestion: Treat the ladder as a single object, but also treat each half of the ladder separately.arrow_forwardThe fishing pole in Figure P10.22 makes an angle of 20.0 with the horizontal. What is the torque exerted by the fish about an axis perpendicular to the page and passing through the anglers hand if the fish pulls on the fishing line with a force F=100N at an angle 37.0 below the horizontal? The force is applied at a point 2.00 m from the anglers hands. Figure P10.22arrow_forward
- Consider the disk in Problem 71. The disks outer rim hasradius R = 4.20 m, and F1 = 10.5 N. Find the magnitude ofeach torque exerted around the center of the disk. FIGURE P12.71 Problems 71-75arrow_forward(a) When opening a door, you push on it perpendicularly with a force of 55.0 N at a distance of 0.850m from the hinges. What torque are you exerting relative to the hinges? (b) Does it matter if you push at the same height as the hinges?arrow_forwardA 215-kg robotic arm at an assembly plant is extended horizontally (Fig. P14.32). The massless support rope attached at point B makes an angle of 15.0 with the horizontal, and the center of mass of the arm is at point C. a. What is the tension in the support rope? b. What are the magnitude and direction of the force exerted by the hinge A on the robotic arm to keep the arm in the horizontal position? FIGURE P14.32arrow_forward
- In Figure P10.40, the hanging object has a mass of m1 = 0.420 kg; the sliding block has a mass of m2 = 0.850 kg; and the pulley is a hollow cylinder with a mass of M = 0.350 kg, an inner radius of R1 = 0.020 0 m, and an outer radius of R2 = 0.030 0 m. Assume the mass of the spokes is negligible. The coefficient of kinetic friction between the block and the horizontal surface is k = 0.250. The pulley turns without friction on its axle. The light cord does not stretch and does not slip on the pulley. The block has a velocity of vi = 0.820 m/s toward the pulley when it passes a reference point on the table. (a) Use energy methods to predict its speed after it has moved to a second point, 0.700 m away. (b) Find the angular speed of the pulley at the same moment. Figure P10.40arrow_forwardA wooden door 2.1 m high and 0.90 m wide is hung by two hinges 1.8 m apart. The lower hinge is 15 cm above the bottom of the door. The center of mass of the door is at its geometric center, and the weight of the door is 260 N, which is supported equally by both hinges. Find the horizontal force exerted by each hinge on the door.arrow_forwardIn exercise physiology studies, it is sometimes important to determine the location of a person's center of gravity. This can be done with the arrangement shown in the figure below. A woman of length 2.00 m lies on top of a horizontal plank so that her head is near the left end of the plank and her feet are near the right end. Each end of the plank is supported by a scale. The scale on the left is labeled Fg1, and reads a slightly larger value than the scale on the right, which is labeled Fg2. A light plank rests on two scales that read Fg1 = 380 N and Fg2 = 260 N. The scales are separated by a distance of 2.00 m. How far from the woman's feet is her center of gravity? ???? marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill