
(a)
Interpretation:
The mass of barium sulfate formed after the completion of the
(a)

Explanation of Solution
Given Information:
The molarity of barium chloride solution is
Titration is a method to determine the concentration of a substance in the solution by making it react with a solution of known concentration of other substance, just beyond the point where the reaction between both the substances completes. In precipitation reactions, on the reaction of the reactants, an insoluble end product is formed which precipitates out from the solution.
The chemical reaction for the formation of barium sulfate on the reaction of barium chloride and potassium sulfate is,
Thus, one mole of barium chloride reacts with one mole of potassium sulfate to form a mole of barium sulfate.
Convert volume units from milliliters to liters as follows:
Convert
Convert
Molarity of the solution
Substitute
Substitute
From the equation, it can be summarized that one mole of barium chloride reacts with one mole of potassium sulfate to produce one mole of barium sulfate. Therefore,
Barium sulfate formed is as follows:
However, only
The molar mass of
The number of moles
Substitute
Thus, the mass of barium sulfate formed is
(b)
Interpretation:
The mass of barium sulfate formed after the completion of the given chemical reaction is to be determined.
(b)

Explanation of Solution
Given Information:
The molarity of barium chloride solution is
The chemical reaction for the formation of barium sulfate on the reaction of barium chloride and potassium sulfate is,
Thus, one mole of barium chloride reacts with one mole of potassium sulfate to form a mole of barium sulfate.
Convert volume units from milliliters to liters as follows:
Convert
Convert
Substitute
Substitute
From the equation, it can be summarized that one mole of barium chloride reacts with one mole of potassium sulfate to produce one mole of barium sulfate.
The number of moles of
The molar mass of
Substitute
Thus, the mass of barium sulfate formed is
(c)
Interpretation:
The mass of barium sulfate formed after the completion of the given chemical reaction is to be determined.
(c)

Explanation of Solution
Given Information:
The molarity of barium chloride solution is
The chemical reaction for the formation of barium sulfate on the reaction of barium chloride and potassium sulfate is,
Thus, one mole of barium chloride reacts with one mole of potassium sulfate to form a mole of barium sulfate.
Convert volume units from milliliters to liters as follows:
Convert
Convert
Substitute
Substitute
From the equation, it can be summarized that one mole of barium chloride reacts with one mole of potassium sulfate to produce one mole of barium sulfate.
However, the number of moles of
The amount of
The molar mass of
Substitute
Thus, the mass of barium sulfate formed is
Want to see more full solutions like this?
Chapter 11 Solutions
Introduction to Chemistry
- Experiment 27 hates & Mechanisms of Reations Method I visual Clock Reaction A. Concentration effects on reaction Rates Iodine Run [I] mol/L [S₂082] | Time mo/L (SCC) 0.04 54.7 Log 1/ Time Temp Log [ ] 13,20] (time) / [I] 199 20.06 23.0 30.04 0.04 0.04 80.0 22.8 45 40.02 0.04 79.0 21.6 50.08 0.03 51.0 22.4 60-080-02 95.0 23.4 7 0.08 0-01 1970 23.4 8 0.08 0.04 16.1 22.6arrow_forward(15 pts) Consider the molecule B2H6. Generate a molecular orbital diagram but this time using a different approach that draws on your knowledge and ability to put concepts together. First use VSEPR or some other method to make sure you know the ground state structure of the molecule. Next, generate an MO diagram for BH2. Sketch the highest occupied and lowest unoccupied MOs of the BH2 fragment. These are called frontier orbitals. Now use these frontier orbitals as your basis set for producing LGO's for B2H6. Since the BH2 frontier orbitals become the LGOS, you will have to think about what is in the middle of the molecule and treat its basis as well. Do you arrive at the same qualitative MO diagram as is discussed in the book? Sketch the new highest occupied and lowest unoccupied MOs for the molecule (B2H6).arrow_forwardQ8: Propose an efficient synthesis of cyclopentene from cyclopentane.arrow_forward
- Q7: Use compound A-D, design two different ways to synthesize E. Which way is preferred? Please explain. CH3I ONa NaOCH 3 A B C D E OCH3arrow_forwardPredict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forward(10 pts) The density of metallic copper is 8.92 g cm³. The structure of this metal is cubic close-packed. What is the atomic radius of copper in copper metal?arrow_forward
- Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forwardPredict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forwardQ3: Rank the following compounds in increasing reactivity of E1 and E2 eliminations, respectively. Br ca. go do A CI CI B C CI Darrow_forward
- Q5: Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2). H₂O דיי "Br KN3 CH3CH2OH NaNH2 NH3 Page 3 of 6 Chem 0310 Organic Chemistry 1 HW Problem Sets CI Br excess NaOCH 3 CH3OH Br KOC(CH3)3 DuckDuckGarrow_forwardQ4: Circle the substrate that gives a single alkene product in a E2 elimination. CI CI Br Brarrow_forwardPlease calculate the chemical shift of each protonsarrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning





