(a)
Interpretation:
The mass of barium sulfate formed after the completion of the
(a)
Explanation of Solution
Given Information:
The molarity of barium chloride solution is
Titration is a method to determine the concentration of a substance in the solution by making it react with a solution of known concentration of other substance, just beyond the point where the reaction between both the substances completes. In precipitation reactions, on the reaction of the reactants, an insoluble end product is formed which precipitates out from the solution.
The chemical reaction for the formation of barium sulfate on the reaction of barium chloride and potassium sulfate is,
Thus, one mole of barium chloride reacts with one mole of potassium sulfate to form a mole of barium sulfate.
Convert volume units from milliliters to liters as follows:
Convert
Convert
Molarity of the solution
Substitute
Substitute
From the equation, it can be summarized that one mole of barium chloride reacts with one mole of potassium sulfate to produce one mole of barium sulfate. Therefore,
Barium sulfate formed is as follows:
However, only
The molar mass of
The number of moles
Substitute
Thus, the mass of barium sulfate formed is
(b)
Interpretation:
The mass of barium sulfate formed after the completion of the given chemical reaction is to be determined.
(b)
Explanation of Solution
Given Information:
The molarity of barium chloride solution is
The chemical reaction for the formation of barium sulfate on the reaction of barium chloride and potassium sulfate is,
Thus, one mole of barium chloride reacts with one mole of potassium sulfate to form a mole of barium sulfate.
Convert volume units from milliliters to liters as follows:
Convert
Convert
Substitute
Substitute
From the equation, it can be summarized that one mole of barium chloride reacts with one mole of potassium sulfate to produce one mole of barium sulfate.
The number of moles of
The molar mass of
Substitute
Thus, the mass of barium sulfate formed is
(c)
Interpretation:
The mass of barium sulfate formed after the completion of the given chemical reaction is to be determined.
(c)
Explanation of Solution
Given Information:
The molarity of barium chloride solution is
The chemical reaction for the formation of barium sulfate on the reaction of barium chloride and potassium sulfate is,
Thus, one mole of barium chloride reacts with one mole of potassium sulfate to form a mole of barium sulfate.
Convert volume units from milliliters to liters as follows:
Convert
Convert
Substitute
Substitute
From the equation, it can be summarized that one mole of barium chloride reacts with one mole of potassium sulfate to produce one mole of barium sulfate.
However, the number of moles of
The amount of
The molar mass of
Substitute
Thus, the mass of barium sulfate formed is
Want to see more full solutions like this?
Chapter 11 Solutions
Introduction to Chemistry
- Nonearrow_forwardWe know that trivalent cations (Cr3+, Mn3+, V3+) with a large difference between octahedral and tetrahedral EECC, form exclusively normal spinels. Bivalent cations (Ni2+ and Cu2+) with high EECC, form inverse spinels. Is this statement correct?arrow_forward(b) Draw the product A that would be formed through the indicated sequence of steps from the given starting material. MeO (1) Br₂, hv (2) NaOEt, EtOH, A (3) BH3:THF (4) H₂O2, HO- B H₂C. CH₂ OH Editarrow_forward
- Small changes in secondary; tertiary primary; secondary primary; tertiary tertiary; secondary protein structure may lead to big changes in protein structures.arrow_forward? The best reagent to achieve the transformation shown is: A Na/NH3 B KCN C HCN CN D H2BCN ய E Transformation is not possible in one steparrow_forwardShow work. don't give Ai generated solution. Don't copy the answer anywherearrow_forward
- συ 3. Determine the rate law equation for a chemical re Mild The following is a chemical reaction: Fron law, 2A+2B C+D+E Run The reaction is found to be first order with respect to A and second order with respect to B. Write the rate law equation for the reaction. (include K, but you can't find the value). 1 How would doubling the concentration of reactant A affect the reaction rate? How would doubling the concentration of reactant B affect the reaction rate? 2 3 K Using yoarrow_forwardHeteropolyacids behave as strong Bronsted acids, compatible with benign oxidants.arrow_forwardygfarrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning