Concept explainers
A Truck on a Drawbridge. A loaded cement mixer drives onto an old drawbridge, where it stalls with its center of gravity three-quarters of the way across the span. The truck driver radios for help, sets the handbrake, and waits. Meanwhile, a boat approaches, so the drawbridge is raised by means of a cable attached to the end opposite the hinge (Fig. P11.52). The draw-bridge is 40.0 m long and has a mass of 18.000 kg; its center of gravity is at its midpoint. The cement mixer, with driver, has mass 30,000 kg. When the drawbridge has been raised to an angle of 30° above the horizontal, the cable makes an angle of 70° with the surface of the bridge. (a) What is the tension T in the cable when the drawbridge is held in this position? (b) What are the horizontal and vertical components of the force the hinge exerts on the span?
Want to see the full answer?
Check out a sample textbook solutionChapter 11 Solutions
University Physics (14th Edition)
Additional Science Textbook Solutions
Essential University Physics (3rd Edition)
Cosmic Perspective Fundamentals
College Physics: A Strategic Approach (3rd Edition)
Physics (5th Edition)
Tutorials in Introductory Physics
Essential University Physics: Volume 2 (3rd Edition)
- A stepladder of negligible weight is constructed as shown in Figure P10.73, with AC = BC = = 4.00 m. A painter of mass m = 70.0 kg stands on the ladder d = 3.00 m from the bottom. Assuming the floor is frictionless, find (a) the tension in the horizontal bar DE connecting the two halves of the ladder, (b) the normal forces at A and B, and (c) the components of the reaction force at the single hinge C that the left half of the ladder exerts on the right half. Suggestion: Treat the ladder as a single object, but also treat each half of the ladder separately.arrow_forwardA stepladder of negligible weight is constructed as shown in Figure P12.40, with AC = BC = = 4.00 m. A painter of mass m = 70.0 kg stands on the ladder d = 3.00 m from the bottom. Assuming the floor is frictionless, find (a) the tension in the horizontal bar DE connecting the two halves of the ladder, (b) the normal forces at A and B, and (c) the components of the reaction force at the single hinge C that the left half of the ladder exerts on the right half. Suggestion: Treat the ladder as a single object, but also treat each half of the ladder separately. Figure P12.40 Problems 40 and 41.arrow_forwardWhy is the following situation impossible? A uniform beam of mass mk = 3.00 kg and length = 1.00 m supports blocks with masses m1 = 5.00 kg and m2 = 15.0 kg at two positions as shown in Figure P12.2. The beam rests on two triangular blocks, with point P a distance d = 0.300 m to the right of the center of gravity of the beam. The position of the object of mass m2 is adjusted along the length of the beam until the normal force on the beam at O is zero. Figure P12.2arrow_forward
- In Example 14.3, we found that one of the steel cables supporting an airplane at the Udvar-Hazy Center was under a tension of 9.30 103 N. Assume the cable has a diameter of 2.30 era and an initial length of 8.00 m before the plane is suspended on the cable. How much longer is the cable when the plane is suspended on it?arrow_forwardWhy is the following situation impossible? A worker in a factory pulls a cabinet across the floor using a rope as shown in Figure P12.36a. The rope make an angle = 37.0 with the floor and is tied h1 = 10.0 cm from the bottom of the cabinet. The uniform rectangular cabinet has height = 100 cm and width w = 60.0 cm, and it weighs 400 N. The cabinet slides with constant speed when a force F = 300 N is applied through the rope. The worker tires of walking backward. He fastens the rope to a point on the cabinet h2 = 65.0 cm off the floor and lays the rope over his shoulder so that he can walk forward and pull as shown in Figure P12.36b. In this way, the rope again makes an angle of = 37.0 with the horizontal and again has a tension of 300 N. Using this technique, the worker is able to slide the cabinet over a long distance on the floor without tiring. Figure P12.36 Problems 36 and 44.arrow_forwardA uniform beam resting on two pivots has a length L = 6.00 m and mass M = 90.0 kg. The pivot under the left end exerts a normal force n1 on the beam, and the second pivot located a distance = 4.00 m from the left end exerts a normal force n2. A woman of mass m = 55.0 kg steps onto the left end of the beam and begins walking to the right as in Figure P10.28. The goal is to find the womans position when the beam begins to tip. (a) What is the appropriate analysis model for the beam before it begins to tip? (b) Sketch a force diagram for the beam, labeling the gravitational and normal forces acting on the beam and placing the woman a distance x to the right of the first pivot, which is the origin. (c) Where is the woman when the normal force n1 is the greatest? (d) What is n1 when the beam is about to tip? (e) Use Equation 10.27 to find the value of n2 when the beam is about to tip. (f) Using the result of part (d) and Equation 10.28, with torques computed around the second pivot, find the womans position x when the beam is about to tip. (g) Check the answer to part (e) by computing torques around the first pivot point. Figure P10.28arrow_forward
- Consider the sketch of a portion of a roller-coaster track seen in Figure P14.5. Identify places on the track that could be considered possible locations of static equilibrium for a rollercoaster car were the car to be placed at any spot on the track.Which places are candidate locations for stable, unstable, andneutral static equilibrium? FIGURE P14.5arrow_forwardA tire, which is mounted on a car, has a radius of 0.23m0.23m. A nail with a mass of 11.4g11.4g is stuck in the tread of the tire, and it is held there with a maximum frictional force of 0.53N0.53N. The car has been elevated on a mechanic lift so that the tire is no longer in contact with the pavement. Part (a) What is the tire tread’s lowest tangential speed, in meters per second, at which the nail will pull free from the tire? (How does gravity affect the net force on the nail at various positions in the rotation of the tire.) Part (b) At what tangential speed, in meters per second, would the nail pull free when it is at the top of the tire? (This is a mildly silly question because the nail would have already pulled free at some other point in the rotation.)arrow_forwardThe figure shows a 4.20-kg, 1.80-m-long rod hinged to a vertical wall and supported by a thin wire. The wire and rod each make angles of 45° with the vertical. When a 10.0-kg block is suspended from the midpoint of the rod, the tension T in the supporting wire is 49.3 N. The wire will break when the tension exceeds 75.0 N. 45° 45° T 10kg Tipler & Mosca, Physics for Scientists and Engineers, 6e © 2008 W.H. Freeman and Company What is the maximum distance dmax from the hinge from which the block can be suspended? dmax 0.871 Incorrect marrow_forward
- A uniform 20 kg wooden plank is supported by a fulcrum at the midpoint. From the fulcrum, a 30 kg boy is positioned at some distance who is balanced by an 80 kg man positioned 1.5 m from it. What is the approximate force exerted by the fulcrum? 1070 N 130 N 1270 N 1200 Narrow_forwardA 3.0 m long steel wire of radius 0.60 mm supports a weight of 50 N. By how much is the wire elongated because of this weight?arrow_forward$ 4 101 R F V A uniform, aluminum beam 9.00 m long, weighting 300 N, rests symmetrically on two supports 5.00 m apart. A boy weighing 600 N starts at point A and walks toward the right. (Figure 1) Figure < 1 of 1 % f5 5 T G B f6 Y H OD & N 7 B f8 * 4+ 00 8 M fg K ly 9 Part A How far beyond point B can the boy walk before the beam tips? VE ΑΣΦ ? 1 = Submit f10 | Request Answer Part B How far from the right end of the beam should support B be placed so that the boy can walk just to the end of the beam without causing it to tip? IVE ΑΣΦ ? 8:44 P 5/29/202 BA P 8 O 1 = Submit 99+ L alt Request Answer Pearson f11 hulu f12 ctrl [ + (6 = الالالال ins prt sc m ] pause m delete backspace ^ V home Review | Constants enter num lock T shift end 7 home ↑ A endarrow_forward
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning