
Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470501979
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11, Problem 11.12P
To determine
Whether the hot or cold fluids of the heat exchanger limits the heat transfer rate.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
A hot surface at 150°C is to be cooled by attaching 3-cm-long, 0.25-cm-diameter aluminum pin fins (k = 237 W/m-K) to it, with a center-
to-center distance of 0.6 cm. The temperature of the surrounding medium is 30°C, and the heat transfer coefficient on the surfaces is
35 W/m²K. Determine the rate of heat transfer from the surface for a 1-m × 1-m section of the plate. Also determine the overall
effectiveness of the fins.
0.6 cm
0.25 cm
The total rate of heat transfer is
kW.
The fin effectiveness is
Consider a stainless steel spoon (k = 8.7 Btu/h·ft·°F) partially immersed in boiling water at 200°F in a kitchen at 75°F. The handle of the spoon has a cross section of 0.08 in × 0.5 in and extends 7 in in the air from the free surface of the water. The heat transfer coefficient at the exposed surfaces of the spoon handle is 3 Btu/h·ft2·°F.
NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part.
A spoon is placed inside the container, such that the distance of the water level from the top end of the handle of the spoon is 7 meters. T sub air is indicated in the region outside the container.
Identify the assumptions required to solve the problem.
Check All That Apply
One-dimensional heat transfer analysis is used to solve the problem.
One-dimensional heat transfer analysis is used to solve the problem.
Bi-dimensional heat transfer analysis is used to solve the problem.
Bi-dimensional heat transfer analysis is…
A turbine blade made of a metal alloy (k=17 W/m-K) has a length of 5.3 cm, a perimeter of 11 cm, and a cross-sectional
area of 5.13 cm². The turbine blade is exposed to hot gas from the combustion chamber at 1133°C with a convection heat
transfer coefficient of 538 W/m²K. The base of the turbine blade maintains a constant temperature of 450°C and the tip is
adiabatic.
NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part.
Hot gas
h=538 W/m²K
-Turbine blade
k = 17 W/m-K
p=11 cm, L=5.3 cm
A = 5.13 cm²
-T=450°C
Determine the heat transfer rate to the turbine blade.
W.
The heat transfer rate is
Chapter 11 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 11 - In a fire-tube boiler, hot products of combustion...Ch. 11 - A shell-and-tube heat exchanger is to heat an...Ch. 11 - A steel tube (k=50W/mK) of inner and outer...Ch. 11 - A heat recovery device involves transferring...Ch. 11 - A novel design for a condenser consists of a tube...Ch. 11 - The condenser of a steam power plant...Ch. 11 - Thin-walled aluminum tubes of diameter D = 10mmare...Ch. 11 - A tinned-tube, cross-how heat exchanger is to use...Ch. 11 - Water at a rate of 45,500kg/h is heated from 80...Ch. 11 - A novel heat exchanger concept consists of a...
Ch. 11 - Prob. 11.12PCh. 11 - A process fluid having a specific heat of...Ch. 11 - A shell-and-tube exchanger (two shells, four tube...Ch. 11 - Consider the heat exchanger of Problem 11.14....Ch. 11 - The hot and cold inlet temperatures to a...Ch. 11 - A concentric tube heat exchanger of length L = 2 m...Ch. 11 - A counterflow, concentric tube heat exchanger is...Ch. 11 - Consider a concentric tube heat exchanger with an...Ch. 11 - A shell-and-tube heat exchanger must be designed...Ch. 11 - A concentric tube heat exchanger for cooling...Ch. 11 - A counterflow, concentric tube heat exchanger used...Ch. 11 - An automobile radiator may be viewed as a...Ch. 11 - Hot air for a large-scale drying operation is to...Ch. 11 - In a dairy operation, milk at a flow rate of 250...Ch. 11 - The compartment heater of an automobile...Ch. 11 - A counterflow, twin-tube heat exchanger is made...Ch. 11 - Consider a coupled shell-in-tube heat exchange...Ch. 11 - For health reasons, public spaces require the...Ch. 11 - A shell-and-tube heat exchanger (1 shell pass, 2...Ch. 11 - Saturated water vapor leaves a steam turbine at a...Ch. 11 - The human brain is especially sensitive to...Ch. 11 - Prob. 11.47PCh. 11 - A plate-tin heat exchanger is used to condense a...Ch. 11 - In a supercomputer, signal propagation delays...Ch. 11 - Untapped geothermal sites in the United States...Ch. 11 - A shell-and-tube heat exchanger consists of 135...Ch. 11 - An ocean thermal energy conversion system is...Ch. 11 - Prob. 11.55PCh. 11 - Prob. 11.56PCh. 11 - The chief engineer at a university that is...Ch. 11 - A shell-and-tube heat exchanger with one shell...Ch. 11 - Prob. 11.59PCh. 11 - Prob. 11.60PCh. 11 - Prob. 11.61PCh. 11 - Prob. 11.62PCh. 11 - A recuperator is a heat exchanger that heats air...Ch. 11 - Prob. 11.64PCh. 11 - Prob. 11.65PCh. 11 - A cross-flow heat exchanger consists of a bundle...Ch. 11 - Exhaust gas from a furnace is used to preheat the...Ch. 11 - Prob. 11.68PCh. 11 - A liquefied natural gas (LNG) regasification...Ch. 11 - Prob. 11.70PCh. 11 - A shell-and-tube heat exchanger consisting of...Ch. 11 - Prob. 11.73PCh. 11 - The power needed to overcome wind and friction...Ch. 11 - Prob. 11.75PCh. 11 - Consider a Rankine cycle with saturated steam...Ch. 11 - Consider the Rankine cycle of Problem 11.77,...Ch. 11 - Prob. 11.79PCh. 11 - Prob. 11.80PCh. 11 - Hot exhaust gases are used in a...Ch. 11 - Prob. 11.84PCh. 11 - Prob. 11.90PCh. 11 - Prob. 11S.1PCh. 11 - Prob. 11S.2PCh. 11 - Prob. 11S.3PCh. 11 - Solve Problem 11.15 using the LMTD method.Ch. 11 - Prob. 11S.5PCh. 11 - Prob. 11S.6PCh. 11 - Prob. 11S.8PCh. 11 - Prob. 11S.10PCh. 11 - Prob. 11S.11PCh. 11 - A cooling coil consists of a bank of aluminum...Ch. 11 - Prob. 11S.17P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Consider a very long, slender rod. One end of the rod is attached to a base surface maintained at Tb, while the surface of the rod is exposed to an air temperature of 400°C. Thermocouples imbedded in the rod at locations 25 mm and 120 mm from the base surface register temperatures of 325°C and 375°C, respectively. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. . x1 32 x Calculate the rod base temperature (°C). The rod base temperature is °C. Air T∞arrow_forward(read image)arrow_forwardThis is a tilt and rotation question. Here are notes attached for reference. ONLY UPLOAD A SOLUTION IF YOU ARE SURE ABOUT THE ANSWER PLEASE.arrow_forward
- What is the difference between true stress/strain and engineering stess/strain? And how do I calculate them?arrow_forwardA rotating shaft of 20 mm diameter is simply supported. The shaft is loaded with a transverse load of 10 kN as shown in the figure. The shaft is made from AISI 1095 hot-rolled steel. The surface has been machined. The shaft operate at temperature T = 450 °C. Consider a reliability factor of 95%. Determine (a) Calculate the reaction forces R, and R₂ (2 points) (b) Draw the shear force and bending moment diagrams and determine the maximum bending moment and shear force. (6 points) 200 mm 20 mm 10,000 N -50 mm- A Not to scale. (c) Determine the critical location of the shaft and the maximum effective stresses. (3 points) (d) Calculate the safety factor against yielding. Does the shaft undergo local yielding? (2 points) (e) Determined the endurance limit, adjusted as necessary with Marin factors. (12 points) (f) Calculate the fatigue factor of safety based on achieving infinite life. (2 points) (g) If the fatigue factor of safety is less than 1 (hint: it should be for this problem), then…arrow_forward(read image)arrow_forward
- (read image)arrow_forward6: Refer to the figure.Given: W1 = 200 kN/m; W2 = 300 kN/m; L1 = 2 m; L2 = 3 m; L3 = 2 m(a) Calculate the total length L so that the resulting upward pressureq is uniform. (b) draw the shear and moment diagram and determinethe maximum shear, maximum positive and negative bendingmoments.arrow_forwardA six cylinder, four-stroke diesel engine develops a power of 200 kW at 2000 rpm. The bsfc is 0.2 kW/kg h of fuel with 34.9° API. The fuel is injected at an average pressure of 350 bar and the pressure in the combustion chamber is 40 bar. Assuming Ca for injector 0.75 and the atmospheric pressure 1 bar. Determine the period of injection in seconds if the total orifice area required per injector is 0.4876 × 10-6 m².arrow_forward
- Trieed a detailed drawing Win explanatio LL Antsmi 1981x pu + 96252 اه 6. The Pre-combustion chamber design engines employ nozzle type commonly referred to as a ....... a. inward-opening nozzle b. multiple-hole nozzle. c. pintle nozzle. d. none of these. 7. If the temperature of the spark plug tip is less than 350 °C, ......... a. the plug might not work. b. the carbon deposits would increase. 8. Port injection sprays fuel....... c. pre-ignition will occur. d. none of these. a. towards the intake valve. b. in the engine cylinder. c. in the throttle body assembly. d. none of these. 9. When the fuel-air mixture changed from best power to a richer ratio, the spark advance should be........ a. increased. b. decreased. c. left unchanged. d. none of these. d. none of these. 10. Spark plugs are classified as hot plugs and cold plugs depending upon ........ a. spark gap. b. the type of plug c. the operating temperature insulator. range of the electrode tip. ---20125 750 x2.01 SP 5.arrow_forwardA 1. How does the octane number (O.N.) of the fuel a. Higher ignition advance is required for a high O.N. fuel. b. Higher ignition retard is required for a high O.N. fuel. affect spark ing:d. Nou does not affect spark timing. c. The octane number 2. How does the ignition system account for load change? these. of a. The throttle b. The vacuum ignition governor c. The mechanism of d. None of is wide opened. provide additional spark advance at part throttle positions. centrifugal advance does the job. these. 3. In the common rail fuel system the fuel is metered by ........ a. low pressure pump. b. injectors. c. high pressure pump. d. none of these. 4.......... is the time period, measured in degrees of cam rotation, during which the contact points remain closed between each opening. a. Distributor. b. Dwell. c. ECU. d. none of these. 5. The trigger wheel in TCI system replaces the ......... used in a contact breaker distributor. a. pickup coil. b. distributor cam. c. condenser. 750 x2.01…arrow_forwarda い يكا 4 +91- pu Answer the following statements by true or false, giving the reason for your answer: 1. Injection pressure in CI engines should be sufficiently high. 2. The purpose of the condenser in battery ignition system is to prevent spark in the ignition coil assembly. 3. An idling engine requires lean mixture of fuel and air. 4. Factors which decide optimum engine firing order are engine vibration, engine cooling and back pressure. 5. It is the duty of the header to control over speeding during CI engine operation when drastic reduction in load occurs. ---20125 750 x2.01 SParrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning

Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
How Shell and Tube Heat Exchangers Work (Engineering); Author: saVRee;https://www.youtube.com/watch?v=OyQ3SaU4KKU;License: Standard Youtube License