Differential Equations with Boundary-Value Problems (MindTap Course List)
9th Edition
ISBN: 9781305965799
Author: Dennis G. Zill
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 10.3, Problem 17E
To determine
The category of the critical point for the plane autonomous system
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(3.3) Find the fixed points of the following dynamical system:
-+v +v, v= 0+v? +1,
and examine their stability.
1. Show that y₁= ez and y2 = ze form a linearly independent set on the interval (-00,00).
2. A bank operates both a drive-up facility and a walk-up window. On a
randomly selected day, let X = the proportion of time that the drive-up facility
is in use (at least one customer is being served or waiting to be served) and Y
= the proportion of the time that the walk-up window is in use. Then the set
of possible values for (X, Y) is the rectangle
D = {(x, y): 0 ≤ x ≤ 1,0 ≤ y ≤ 1}. Suppose the joint probability density
function of (X, Y) is given by:
fx,y(x,y) = { / (x + y ² )
²²(x + y²) 0≤x≤ 1,0 ≤ y ≤ 1
Otherwise
0
(a) Show that fx,y is legitimate
(b) Find the probability that neither facility is busy more than one-quarter of
the time.
(c) Find fx and fy, the marginal probability density function of X and Y
respectively.
(d) Construct the conditional probability density function of Y given that
X=0.8.
(e) Evaluate the probability that the walk-up facility is busy at most half of the
time given that X=0.8
(f) Calculate the expected proportion of the time that the walk-up facility…
Chapter 10 Solutions
Differential Equations with Boundary-Value Problems (MindTap Course List)
Ch. 10.1 - In Problems 16 write the given nonlinear...Ch. 10.1 - Prob. 2ECh. 10.1 - In Problems 16 write the given nonlinear...Ch. 10.1 - Prob. 4ECh. 10.1 - In Problems 16 write the given nonlinear...Ch. 10.1 - In Problems 16 write the given nonlinear...Ch. 10.1 - Prob. 7ECh. 10.1 - Prob. 8ECh. 10.1 - Prob. 9ECh. 10.1 - Prob. 10E
Ch. 10.1 - Prob. 11ECh. 10.1 - Prob. 12ECh. 10.1 - Prob. 13ECh. 10.1 - Prob. 14ECh. 10.1 - Prob. 15ECh. 10.1 - In Problems 716 find all critical points of the...Ch. 10.1 - In Problems 2326 solve the given nonlinear plane...Ch. 10.1 - In Problems 2326 solve the given nonlinear plane...Ch. 10.1 - In Problems 2326 solve the given nonlinear plane...Ch. 10.1 - In Problems 2326 solve the given nonlinear plane...Ch. 10.1 - Prob. 27ECh. 10.1 - Prob. 28ECh. 10.1 - Prob. 29ECh. 10.1 - Prob. 30ECh. 10.2 - In Problems 916 classify the critical point (0, 0)...Ch. 10.2 - Prob. 10ECh. 10.2 - Prob. 11ECh. 10.2 - Prob. 12ECh. 10.2 - In Problems 916 classify the critical point (0, 0)...Ch. 10.2 - In Problems 916 classify the critical point (0, 0)...Ch. 10.2 - In Problems 916 classify the critical point (0, 0)...Ch. 10.2 - Prob. 16ECh. 10.2 - Prob. 17ECh. 10.2 - Determine a condition on the real constant so...Ch. 10.2 - Prob. 19ECh. 10.2 - Prob. 20ECh. 10.2 - Prob. 21ECh. 10.2 - Prob. 22ECh. 10.2 - Prob. 23ECh. 10.2 - In Problems 23-26 a nonhomogeneous linear system...Ch. 10.2 - Prob. 25ECh. 10.2 - Prob. 26ECh. 10.3 - Prob. 1ECh. 10.3 - Prob. 2ECh. 10.3 - Prob. 3ECh. 10.3 - Prob. 4ECh. 10.3 - Prob. 5ECh. 10.3 - In Problems 310, without solving explicitly,...Ch. 10.3 - In Problems 310, without solving explicitly,...Ch. 10.3 - Prob. 8ECh. 10.3 - Prob. 9ECh. 10.3 - In Problems 310, without solving explicitly,...Ch. 10.3 - Prob. 11ECh. 10.3 - In Problems 1120 classify (if possible) each...Ch. 10.3 - Prob. 13ECh. 10.3 - Prob. 14ECh. 10.3 - Prob. 15ECh. 10.3 - Prob. 16ECh. 10.3 - Prob. 17ECh. 10.3 - Prob. 18ECh. 10.3 - Prob. 19ECh. 10.3 - Prob. 20ECh. 10.3 - Prob. 21ECh. 10.3 - Prob. 22ECh. 10.3 - Prob. 23ECh. 10.3 - Prob. 24ECh. 10.3 - Prob. 25ECh. 10.3 - Prob. 26ECh. 10.3 - Prob. 27ECh. 10.3 - Show that the dynamical system x = x + xy y = 1 y...Ch. 10.3 - Prob. 29ECh. 10.3 - Prob. 30ECh. 10.3 - Prob. 31ECh. 10.3 - Prob. 32ECh. 10.3 - Prob. 33ECh. 10.3 - Prob. 34ECh. 10.3 - Prob. 35ECh. 10.3 - Prob. 36ECh. 10.3 - When a nonlinear capacitor is present in an...Ch. 10.3 - Prob. 38ECh. 10.3 - Prob. 39ECh. 10.4 - Prob. 1ECh. 10.4 - Prob. 2ECh. 10.4 - Prob. 3ECh. 10.4 - Prob. 4ECh. 10.4 - Prob. 5ECh. 10.4 - Prob. 6ECh. 10.4 - Prob. 7ECh. 10.4 - Prob. 8ECh. 10.4 - Prob. 9ECh. 10.4 - Competition Models A competitive interaction is...Ch. 10.4 - Prob. 12ECh. 10.4 - Prob. 13ECh. 10.4 - Prob. 14ECh. 10.4 - Prob. 15ECh. 10.4 - Additional Mathematical Models Damped Pendulum If...Ch. 10.4 - Prob. 17ECh. 10.4 - Prob. 18ECh. 10.4 - Prob. 19ECh. 10.4 - Prob. 20ECh. 10.4 - Prob. 21ECh. 10.4 - Prob. 22ECh. 10 - Prob. 1RECh. 10 - Prob. 2RECh. 10 - Prob. 3RECh. 10 - Prob. 4RECh. 10 - Prob. 5RECh. 10 - Prob. 6RECh. 10 - Prob. 7RECh. 10 - Prob. 8RECh. 10 - Prob. 9RECh. 10 - Prob. 10RECh. 10 - Prob. 11RECh. 10 - Discuss the geometric nature of the solutions to...Ch. 10 - Classify the critical point (0, 0) of the given...Ch. 10 - Prob. 14RECh. 10 - Prob. 15RECh. 10 - Prob. 16RECh. 10 - Prob. 17RECh. 10 - Prob. 18RECh. 10 - Prob. 19RECh. 10 - Prob. 20RE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- 3. The steady-state distribution of temperature on a heated plate can be modeled by the Laplace equation, 25°C 25°C If the plate is represented by a series of nodes (Fig.1), centered T12 100°C O°C finite-divided differences can substituted for the second T 100°C 0°C derivatives, which results in a system of linear algebraic equations as follows: 75°C 75°C Use the Gauss-Seidel method to solve for the temperatures of the (175 |125 75 25 -1 -1 4 -1 4 nodes in Fig.1. Perform the 0 - 1||T, 2 4 -1|T21 - computation until ɛ, is less than Es = 0.5%. -1 -1 4 [T2 MATH206 week (5) 45 Spring 2021, 20/4/2021arrow_forward1page 6arrow_forward9. discuss the behavior of the dynamical system Xk+1= Axk where -0.31 (@) A = [ (b) A = ["0.3 11 1.5 0.3 (b) A = 0.3 1 3Darrow_forward
- 4. Let c = (1, 1, 1, 1), c cź (2, 2+x, 2, 2), c = (3,3,3+ x, 3) and c (3, 4, 4,4+ x). Find all x € (-∞, ∞) such that {ci, ci, ci, c} is linearly dependent. (a) x = 1 (b) x = 0 (c) X = -1 (d) x = 0 or x = -1 (e) None of these = =arrow_forward9. discuss the behavior of the dynamical system xk+1= AXk where -0.3] 2 ] (b) A = 1.5 (a) A = 1.2 0.3 0.41 -0.3 1.1arrow_forward6.arrow_forward
- 3. Explain why whenever A is a Ax = 0 always has linear transformation, solutionarrow_forward2. Determine the type and stability of each real equilibrium point by calculating the Jacobian matrix at each equilibrium. (a) (b) (c) x=1-xy y = -x- y³ x = x - 3y + 2xy =-4x - 6y - xy x = 4x - x³ - xy² = 4y - x²y-y³arrow_forward3. In M3x2(F), prove that the set { ( ) ( ) ( ) ( ) ( ) } " 0 0 1 is linearly dependent.arrow_forward
- 4. [Statistics] Suppose that we have n points (21, y1), ... (In, Yn) in the plane, and we wish to draw the most reasonable straight line through them. It is not likely that the line will be able to pass exactly through every point, but we would like it to be as "close as possible". Let y = a + Br be the linear function that we use to go through these points, for a and 3 to be determined. There are various criteria we could use to determine what the "best" line is, but the most common is the least-squares line of best fit, also called the regression line. For this line, we seek to minimize the sum of the squares of the vertical deviations of the points from the line. (a) In everything that follows, remember that the r; and y4 are the constants, and a and 3 are the variables. We seek the values of a and B (in terms of the r; and the y:) which minimize f(a, 8) = (b) which we do by solving the following system af da af (c) to get the following values of a and 3: To keep the expressions…arrow_forwardProblem 16 (#2.3.34).Let f(x) = ax +b, and g(x) = cx +d. Find a condition on the constants a, b, c, d such that f◦g=g◦f. Proof. By definition, f◦g(x) = a(cx +d) + b=acx +ad +b, and g◦f(x) = c(ax +b) + d=acx +bc +d. Setting the two equal, we see acx +ad +b=acx +bc +d ad +b=bc +d (a−1)d=(c−1)b That last step was merely added for aesthetic reasons.arrow_forward6. Consider the dynamical system dx - = x (x² − 4x) - dt where X a parameter. Determine the fixed points and their nature (i.e. stable or unstable) and draw the bifurcation diagram.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education
Discrete Mathematics and Its Applications ( 8th I...
Math
ISBN:9781259676512
Author:Kenneth H Rosen
Publisher:McGraw-Hill Education
Mathematics for Elementary Teachers with Activiti...
Math
ISBN:9780134392790
Author:Beckmann, Sybilla
Publisher:PEARSON
Thinking Mathematically (7th Edition)
Math
ISBN:9780134683713
Author:Robert F. Blitzer
Publisher:PEARSON
Discrete Mathematics With Applications
Math
ISBN:9781337694193
Author:EPP, Susanna S.
Publisher:Cengage Learning,
Pathways To Math Literacy (looseleaf)
Math
ISBN:9781259985607
Author:David Sobecki Professor, Brian A. Mercer
Publisher:McGraw-Hill Education
What is a Function? Business Mathematics and Statistics; Author: Edmerls;https://www.youtube.com/watch?v=fcGNFyqRzuI;License: Standard YouTube License, CC-BY
FUNCTIONS CONCEPTS FOR CBSE/ISC/JEE/NDA/CET/BANKING/GRE/MBA/COMEDK; Author: Neha Agrawal Mathematically Inclined;https://www.youtube.com/watch?v=hhbYynJwBqk;License: Standard YouTube License, CC-BY