(a)
Interpretation:
The element iodine is a metal, non-metal or metalloid has to be given.
Concept Introduction:
Metals:
Metals are the elements which are shiny materials and good conductors of heat and electricity. All metals are solids at room temperature except for mercury, which is a liquid.
Non-metals:
Nonmetals are the elements which do not have a shiny appearance and non-metals are generally poor conductors of heat and electricity.
Metalloids:
Metalloids are the elements which have properties intermediate between metals and non-metals. Only seven elements are categorized as metalloids.
(b)
Interpretation:
The element tungsten is a metal, non-metal or metalloid has to be given.
Concept Introduction:
Refer to part (a).
(c)
Interpretation:
The element molybdenum is a metal, non-metal or metalloid has to be given.
Concept Introduction:
Refer to part (a).
(d)
Interpretation:
The element germanium is a metal, non-metal or metalloid has to be given.
Concept Introduction:
Refer to part (a).
Want to see the full answer?
Check out a sample textbook solutionChapter 10 Solutions
EBK FOUNDATIONS OF COLLEGE CHEMISTRY
- The density of air at 20C and 1.00 atm is 1.205 g/L. If this air were compressed at the same temperature to equal the pressure at 50.0 m below sea level, what would be its density? Assume the barometric pressure is constant at 1.00 atm. The density of seawater is 1.025 g/cm3.arrow_forwardYou have two pressure-proof steel cylinders of equal volume, one containing 1.0 kg of CO and the other containing 1.0 kg of acetylene, C2H2. (a) In which cylinder is the pressure greater at 25 C? (b) Which cylinder contains the greater number of molecules?arrow_forward(5) Using the data in Table 1C.3 (from the textbook), calculate the pressure that 2.500 moles of carbon dioxide confined in a volume of 1.000 L at 450 K exerts. Compare the pressure with that calculated assuming ideal-gas behavior.arrow_forward
- A sample of 3.42 mol of xenon is confined at low pressure in a volume at a temperature of 86 °C. Describe quantitatively the effects of each of the following changes on the pressure, the average kinetic energy per molecule in the gas, and the root-mean-square speed. (a) The temperature is increased to 199 °C (b) The volume is tripled. (c) The amount of xenon is decreased to 1.87 mol Give each answer as a decimal factor of the form: new value factor old value. A factor of 1 means no change. ChangeP KEavgmsarrow_forwardThe partial pressure of water vapor in saturated air at 27 °C is 3.51×10-2 atm. (a) How many molecules of water are in 1.21 cm3 of saturated air at 27 °C? (b) What volume of saturated air at 27 °C contains 0.408 mol of water?arrow_forward4(a) A car tyre (an automobile tire) was in ated to a pressure of 24 lb in−2(1.00 atm = 14.7 lb in−2) on a winter’s day when the temperature was −5 °C. What pressure will be found, assuming no leaks have occurred and that the volume is constant, on a subsequent summer’s day when the temperature is 35 °C? What complications should be taken into account in practice? (b) A sample of hydrogen gas was found to have a pressure of 125 kPa when the temperature was 23 °C. What can its pressure be expected to be when the temperature is 11 °C?arrow_forward
- A 5.50-mole sample of NH3 gas is kept in a 1.85-L container at 309 K. If the van der Waals equation is assumed to give the correct answer for the pressure of the gas, calculate the percent error made in using the ideal-gas equation to calculate the pressure. (Use a = 4.17 atm·L2·mol−2 and b = 0.0371 L·mol−1 for the van der Waals equation.)arrow_forwardCylinders of compressed gas are typically filled to a pressure of 200 bar. For oxygen, what would be the molar volume at this pressure and 25 °C based on (i) the perfect gas equation, (ii) the van der Waals equation? For oxygen, a = 1.364 dm6 atm mol−2, b = 3.19 × 10–2 dm3 mol−1.arrow_forwardJj.200.arrow_forward
- Describe what happens to the average kinetic energy of ideal gas molecules when the conditions are changed as follows:(a) The pressure of the gas is increased by reducing the volume at constant temperature.(b) The pressure of the gas is increased by increasing the temperature at constant volume.(c) The average velocity of the molecules is increased by a factor of 2.arrow_forward(a) Compute the root-mean-square speed of H2 molecules in hydrogen at a temperature of 300 K.(b) Repeat the calculation for SF6 molecules in gaseous sulfur hexafluoride at 300 K.arrow_forwardAn ideal gas occupies a volume of 5.00 L at STP. (a) What is its pressure (in kPa) if the volume is halved and its absolute pressure is doubled? (b) What is its temperature if its volume is doubled and its pressure is tripled?arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning