ENGINEERING FUNDAMENTALS
ENGINEERING FUNDAMENTALS
6th Edition
ISBN: 9781337705011
Author: MOAVENI
Publisher: CENGAGE L
Question
Book Icon
Chapter 10, Problem 39P
To determine

Find the average reaction force for the corresponding time of contact on cushion material.

Expert Solution & Answer
Check Mark

Answer to Problem 39P

The average reaction force for the corresponding time of contact is calculated and tabulated in Table 1.

Explanation of Solution

Given data:

Weight of the laptop (w) is 22 N.

Laptop is dropped at a height (h) is 1m.

Formula used:

Formula to determine the average force is,

Favg=mVfmViΔt (1)

Here,

Δt is the time period.

m is the mass of the object.

Vf is the final velocity of the object.

Vi is the initial velocity of the object.

Formula to determine the initial velocity of the laptop right before the floor is,

Vi=2gh (2)

Here,

g is the acceleration due to gravity.

h is the height at which laptop is dropped.

Formula to determine the mass of the laptop is,

m=wg (3)

Here,

w is the weight.

g is the acceleration due to gravity.

Calculation:

The cushion material reduces the velocity of the laptop to a final velocity of zero. Therefore,

Vf=0

Substitute 9.81ms2 for g and 1 m for h in equation (2).

Vi=2×9.81ms2×1m=19.62m2s2=4.43ms

Substitute 22 N for w and 9.81ms2 for g in equation (3).

m=22N9.81ms2        [1N=kgms2]=2.24Ns2m      [1kg=Ns2m]=2.24kg

Substitute 0 for Vf, 2.24 kg for m, 4.43ms for Vi, and 0.01 s for Δt in equation (1).

Favg=(2.24kg×0)(2.24kg×4.43ms)(0.01s)=(0)(9.92kgms)(0.01s)=(9.92kgms)(10.01s)            [1N=kgms2]=992N

Substitute 0 for Vf, 2.24 kg for m, 4.43ms for Vi, and 0.05 s for Δt in equation (1).

Favg=(2.24kg×0)(2.24kg×4.43ms)(0.05s)

Reduce the equation as follows,

Favg=(0)(9.92kgms)(0.05s)=9.92kgms×10.05s          [1N=kgms2]=198N

Substitute 0 for Vf, 2.24 kg for m, 4.43ms for Vi, and 0.1 s for Δt in equation (1).

Favg=(2.24kg×0)(2.24kg×4.43ms)(0.1s)=(0)(9.92kgms)(0.1s)=(9.92kgms)(10.1s)                 [1N=kgms2]=99.2N

Substitute 0 for Vf, 2.24 kg for m, 4.43ms for Vi, and 1 s for Δt in equation (1).

Favg=(2.24kg×0)(2.24kg×4.43ms)(1s)=(0)(9.92kgms)(1s)=(9.92kgms)(11s)                     [1N=kgms2]=9.92N

Substitute 0 for Vf, 2.24 kg for m, 4.43ms for Vi, and 2 s for Δt in equation (1).

Favg=(2.24kg×0)(2.24kg×4.43ms)(2s)=(0)(9.92kgms)(2s)=(9.92kgms)(12s)                  [1N=kgms2]=4.96N

Thus, the average reaction force for the corresponding time of contact is calculated and tabulated in table 1.

Table 1

Time of contact (Seconds)The average reaction force (N)
0.01992N
0.05198N
0.199.2 N
1.09.92 N
2.04.96 N

Conclusion:

Hence, the average reaction force for the corresponding time of contact is calculated and tabulated.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Calculate the shear modulus for a given cylindrical metal speciman and test results of T = 1500 N ⋅m, L = 20 cm, D= 5 cm, and ϕ = 0 02 rad . Can you tell what the material is?
Question 1: 1. The figure shows two steel shafts connected by a steel pipe with interference. Modulus of elasticity = 210000MPa, Poisson's ratio = 0.3, and Coefficient of friction = 0.1. Fill the following table: L2 Interference H6/n5 dl 58 mm S2 d2 100 mm LI 70 mm L2 150 mm shaft diameter, d = mm Shaft inner diameter, di = mm Hole outer diameter, do = mm Interference length = mm Coef. Of friction = Modulus of elasticity Poisson's ratio Interference type Мах. Min. Interference micron Мра Pressure = Force = N Torque = Nmm Capacity of the assembly press Allowable transmitted torque Nmm - LP
A 100-lb force is pulling a 200-lb block as shown. The coefficient of static friction between the block and the floor is μs = 0.6 and the coefficient of kinetic friction is μk = 0.4. a. What is the friction force between the block and the floor? b. Will the block move?

Chapter 10 Solutions

ENGINEERING FUNDAMENTALS

Ch. 10.4 - Prob. BYGVCh. 10.6 - Prob. 1BYGCh. 10.6 - Prob. 2BYGCh. 10.6 - Prob. 3BYGCh. 10.6 - Prob. 4BYGCh. 10.6 - Explain what is meant by modulus of elasticity and...Ch. 10.6 - Prob. 6BYGCh. 10.6 - Prob. BYGVCh. 10 - Prob. 2PCh. 10 - An astronaut has a mass of 68 kg. What is the...Ch. 10 - Prob. 4PCh. 10 - Former basketball player Shaquille ONeal weighs...Ch. 10 - Prob. 6PCh. 10 - Prob. 7PCh. 10 - Prob. 8PCh. 10 - Calculate the pressure exerted by water on the...Ch. 10 - Prob. 10PCh. 10 - Prob. 11PCh. 10 - Prob. 12PCh. 10 - Prob. 13PCh. 10 - If a pressure gauge on a compressed air tank reads...Ch. 10 - Prob. 15PCh. 10 - Calculate the pressure exerted by water on a scuba...Ch. 10 - Prob. 17PCh. 10 - Using the information given in Table 10.4,...Ch. 10 - Bourdon-type pressure gauges are used in thousands...Ch. 10 - Prob. 20PCh. 10 - Prob. 21PCh. 10 - Prob. 22PCh. 10 - Prob. 23PCh. 10 - Prob. 24PCh. 10 - Determine the pressure required to decrease the...Ch. 10 - SAE 30 oil is contained in a cylinder with inside...Ch. 10 - Compute the deflection of a structural member made...Ch. 10 - Prob. 28PCh. 10 - A structural member with a rectangular cross...Ch. 10 - Prob. 30PCh. 10 - Prob. 31PCh. 10 - Prob. 32PCh. 10 - Prob. 33PCh. 10 - Prob. 34PCh. 10 - Prob. 35PCh. 10 - Calculate the shear modulus for a given...Ch. 10 - Prob. 37PCh. 10 - Prob. 38PCh. 10 - Prob. 39PCh. 10 - Obtain the values of vapor pressures of alcohol,...Ch. 10 - Prob. 41PCh. 10 - Prob. 42PCh. 10 - Prob. 43PCh. 10 - We have used an experimental setup similar to...Ch. 10 - Prob. 45PCh. 10 - Prob. 46PCh. 10 - Prob. 47PCh. 10 - Prob. 48PCh. 10 - Prob. 49PCh. 10 - Prob. 50P
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Structural Analysis
Civil Engineering
ISBN:9781337630931
Author:KASSIMALI, Aslam.
Publisher:Cengage,
Text book image
Structural Analysis (10th Edition)
Civil Engineering
ISBN:9780134610672
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Text book image
Fundamentals of Structural Analysis
Civil Engineering
ISBN:9780073398006
Author:Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:McGraw-Hill Education
Text book image
Sustainable Energy
Civil Engineering
ISBN:9781337551663
Author:DUNLAP, Richard A.
Publisher:Cengage,
Text book image
Traffic and Highway Engineering
Civil Engineering
ISBN:9781305156241
Author:Garber, Nicholas J.
Publisher:Cengage Learning