Physics for Scientists and Engineers with Modern Physics
Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337553292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 10, Problem 19P

Your grandmother enjoys creating pottery as a hobby. She uses a potter’s wheel, which is a stone disk of radius R = 0.500 m and mass M = 100 kg. In operation, the wheel rotates at 50.0 rev/min. While the wheel is spinning, your grandmother works clay at the center of the wheel with her hands into a pot-shaped object with circular symmetry. When the correct shape is reached, she wants to stop the wheel in as short a time interval as possible, so that the shape of the pot is not further distorted by the rotation. She pushes continuously with a wet rag as hard as she can radially inward on the edge of the wheel and the wheel stops in 6.0 s. (a) You would like to build a brake to stop the wheel in a shorter time interval, but you must determine the coefficient of friction between the rag and the wheel in order to design a better system. You determine that the maximum pressing force your grandmother can sustain for 6.00 s is 70.0 N. (b) What If? If your grandmother instead chooses to press down on the upper surface of the wheel a distance r = 0.300 m from the axis of rotation, what is the force needed to stop the wheel in 6.00 s? Assume that the coefficient of kinetic friction between the wet rag and the wheel remains the same as before.

Blurred answer
Students have asked these similar questions
Your grandmother enjoys creating pottery as a hobby. She uses a potter’s wheel, which is a stone disk of radius R = 0.500 m and mass M = 100 kg. In operation, the wheel rotates at 50.0 rev/min. While the wheel is spinning, your grandmother works clay at the center of the wheel with her hands into a pot-shaped object with circular symmetry. When the correct shape is reached, she wants to stop the wheel in as short a time interval as possible, so that the shape of the pot is not further distorted by the rotation. She pushes continuously with a wet rag as hard as she can radially inward on the edge of the wheel and the wheel stops in 6.00 s. (a) You would like to build a brake to stop the wheel in a shorter time interval, but you must determine the coefficient of friction between the rag and the wheel in order to design a better system. You determine that the maximum pressing force your grandmother can sustain for 6.00 s is 70.0 N. (b) What If? If your grandmother instead chooses to press…
Your grandmother enjoys creating pottery as a hobby. She uses a potter's wheel, which is a stone disk of radius R = 0.540 m and mass M = 100 kg. In operation, the wheel rotates at 45.0 rev/min. While the wheel is spinning, your grandmother works clay at the center of the wheel with her hands into a pot-shaped object with circular symmetry. When the correct shape is reached, she wants to stop the wheel in as short a time interval as possible, so that the shape of the pot is not further distorted by the rotation. She pushes continuously with a wet rag as hard as she can radially inward on the edge of the wheel and the wheel stops in 6.00 s.   You would like to build a brake to stop the wheel in a shorter time interval, but you must determine the coefficient of friction (?k) between the rag and the wheel in order to design a better system. You determine that the maximum pressing force your grandmother can sustain for 6.00 s is 65.0 N. What If? If your grandmother instead chooses to press…
Your grandmother enjoys creating pottery as a hobby. She uses a potter's wheel, which is a stone disk of radius R = 0.520 m and mass M = 100 kg. In operation, the wheel rotates at 45.0 rev/min. While the wheel is spinning, your grandmother works clay at the center of the wheel with her hands into a pot-shaped object with circular symmetry. When the correct shape is reached, she wants to stop the wheel in as short a time interval as possible, so that the shape of the pot is not further distorted by the rotation. She pushes continuously with a wet rag as hard as she can radially inward on the edge of the wheel and the wheel stops in 6.00 s.   (a)You would like to build a brake to stop the wheel in a shorter time interval, but you must determine the coefficient of friction between the rag and the wheel in order to design a better system. You determine that the maximum pressing force your grandmother can sustain for 6.00 s is 50.0 N. ?k =____________     (b)What If? If your grandmother…

Chapter 10 Solutions

Physics for Scientists and Engineers with Modern Physics

Ch. 10 - A machine part rotates at an angular speed of...Ch. 10 - A dentists drill starts from rest. After 3.20 s of...Ch. 10 - Why is the following situation impossible?...Ch. 10 - Review. Consider a tall building located on the...Ch. 10 - Prob. 8PCh. 10 - A discus thrower (Fig. P10.9) accelerates a discus...Ch. 10 - Prob. 10PCh. 10 - A car accelerates uniformly from rest and reaches...Ch. 10 - Review. A small object with mass 4.00 kg moves...Ch. 10 - Prob. 13PCh. 10 - Find the net torque on the wheel in Figure P10.14...Ch. 10 - A grinding wheel is in the form of a uniform solid...Ch. 10 - Review. A block of mass m1 = 2.00 kg and a block...Ch. 10 - Prob. 17PCh. 10 - Prob. 18PCh. 10 - Your grandmother enjoys creating pottery as a...Ch. 10 - Prob. 20PCh. 10 - You have just bought a new bicycle. On your first...Ch. 10 - Imagine that you stand tall and turn about a...Ch. 10 - Following the procedure used in Example 10.7,...Ch. 10 - Two balls with masses M and m are connected by a...Ch. 10 - Rigid rods of negligible mass lying along the y...Ch. 10 - A war-wolf or trebuchet is a device used during...Ch. 10 - Big Ben, the nickname for the clock in Elizabeth...Ch. 10 - Consider two objects with m1 m2 connected by a...Ch. 10 - Review. An object with a mass of m = 5.10 kg is...Ch. 10 - Prob. 30PCh. 10 - A uniform solid disk of radius R and mass M is...Ch. 10 - This problem describes one experimental method for...Ch. 10 - A tennis ball is a hollow sphere with a thin wall....Ch. 10 - A smooth cube of mass m and edge length r slides...Ch. 10 - Prob. 35PCh. 10 - Prob. 36APCh. 10 - Prob. 37APCh. 10 - Prob. 38APCh. 10 - Prob. 39APCh. 10 - Prob. 40APCh. 10 - Review. A string is wound around a uniform disk of...Ch. 10 - Review. A spool of wire of mass M and radius R is...Ch. 10 - Review. A clown balances a small spherical grape...Ch. 10 - Prob. 44CPCh. 10 - A spool of thread consists of a cylinder of radius...Ch. 10 - Prob. 46CPCh. 10 - A uniform, hollow, cylindrical spool has inside...Ch. 10 - A cord is wrapped around a pulley that is shaped...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Moment of Inertia; Author: Physics with Professor Matt Anderson;https://www.youtube.com/watch?v=ZrGhUTeIlWs;License: Standard Youtube License