College Physics
1st Edition
ISBN: 9781938168000
Author: Paul Peter Urone, Roger Hinrichs
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 10, Problem 13CQ
When you start the engine of your car with the transmission in neutral, you notice that the car rocks in the opposite sense of the engine's rotation. Explain in terms of conservation of
Expert Solution & Answer
Trending nowThis is a popular solution!
Chapter 10 Solutions
College Physics
Ch. 10 - Analogies exist between rotational and...Ch. 10 - Explain why centripetal acceleration changes the...Ch. 10 - In circular motion, a tangential acceleration can...Ch. 10 - Suppose a Piece of food is on the edge of a...Ch. 10 - The moment of inertia of a long rod spun around an...Ch. 10 - Why is the moment of inertia of a hoop that has a...Ch. 10 - Give an example in which anal forte exerts a large...Ch. 10 - While reducing the mass of a racing bike, the...Ch. 10 - A ball slides up a frictionless ramp. It is then...Ch. 10 - Describe the energy transformations involved when...
Ch. 10 - What energy transformations are involved when a...Ch. 10 - The Earth has more rotational kinetic energy now...Ch. 10 - When you start the engine of your car with the...Ch. 10 - Suppose a child walks from the outer edge of a...Ch. 10 - Suppose a child gets off a rotating...Ch. 10 - Helicopters have a small propeller on their tail...Ch. 10 - Whenever a helicopter has two sets of lifting...Ch. 10 - Describe how work is done by a skater pulling in...Ch. 10 - When there is a global heating trend on Earth, the...Ch. 10 - Nearly all conventional piston engines have...Ch. 10 - Jet turbines spin rapidly. They are designed to...Ch. 10 - An astronaut tightens a bolt on a satellite in...Ch. 10 - Competitive divers pull their limbs in and curl up...Ch. 10 - Draw a free body diagram to show how a diver gains...Ch. 10 - In terms of angular momentum, what is the...Ch. 10 - Describe different collisions—one in in which...Ch. 10 - Suppose an ice hockey puck strikes a hockey stick...Ch. 10 - While driving his motorcycle at highway speed, a...Ch. 10 - While driving his motorcycle at highway speed, a...Ch. 10 - Gyroscopes used in guidance systems to indicate...Ch. 10 - At its peak, a tornado is 60.0 m in diameter and...Ch. 10 - Integrated Concepts An ultracentrifuge accelerates...Ch. 10 - Integrated Concepts You have a grindstone (a disk)...Ch. 10 - Unreasonable Results You are told that a...Ch. 10 - With the aid of a string, a gyroscope is...Ch. 10 - Suppose a piece of dust finds itself on a CD. If...Ch. 10 - A gyroscope slows from an initial rate of 32.0...Ch. 10 - During a very quick stop, a car decelerates at...Ch. 10 - Everyday application: Suppose a yo-yo has a center...Ch. 10 - This problem considers additional aspects of...Ch. 10 - Calculate the moment of inertia of a skater given...Ch. 10 - The triceps muscle in the back of the upper arm...Ch. 10 - A soccer player extends her lower leg in a kicking...Ch. 10 - Suppose you exert a force of 180 N tangential to a...Ch. 10 - Consider the 12.0 kg motorcycle wheel shown in...Ch. 10 - Zorch, an archenemy of Superman, decides to slow...Ch. 10 - An automobile engine can produce 200 N m of...Ch. 10 - Starting with the formula for the moment of...Ch. 10 - Unreasonable Results A gymnast doing a forward...Ch. 10 - Unreasonable Results An advertisement claims that...Ch. 10 - This problem considers energy and work aspects of...Ch. 10 - What is the final velocity of a hoop that rolls...Ch. 10 - (a) Calculate the rotational kinetic energy of...Ch. 10 - Calculate the rotational kinetic energy in the...Ch. 10 - A baseball pitcher throws the ball in a motion...Ch. 10 - While punting a football, a kicker rotates his leg...Ch. 10 - A bus contains a 1500 kg flywheel (a disk that has...Ch. 10 - A ball with an initial velocity of 8.00 m/s rolls...Ch. 10 - While exercising in a fitness center, a man lies...Ch. 10 - To develop muscle tone, a woman lifts a 2.00-kg...Ch. 10 - Consider two cylinders that start down identical...Ch. 10 - What is the moment of inertia of an object that...Ch. 10 - Suppose a 200-kg motorcycle has two wheels like,...Ch. 10 - In softball, the pitcher throws with the arm fully...Ch. 10 - Construct Your Own Problem Consider the work done...Ch. 10 - (a) Calculate the angular momentum of the Earth in...Ch. 10 - (a) What is the angular momentum of the Moon in...Ch. 10 - Suppose you start an antique car by exerting a...Ch. 10 - A playground merry-go-round has a mass of 120 kg...Ch. 10 - Three children are riding on the edge of a...Ch. 10 - (a) Calculate the angular momentum of an ice...Ch. 10 - Consider the Earth-Moon system. Construct a...Ch. 10 - Repeat Example 10.15 in which the disk strikes and...Ch. 10 - Repeat Example 10.15 in which the disk originally...Ch. 10 - Twin skaters approach one another as shown in...Ch. 10 - Suppose a 0.250-kg ball is thrown at 15.0 m/s to a...Ch. 10 - Repeat Example 10.15 in which the stick is free to...Ch. 10 - Integrated Concepts The axis of Earth makes a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
1. Why is the quantum-mechanical model of the atom important for understanding chemistry?
Chemistry: Structure and Properties (2nd Edition)
3. CAUTION Why is genetic drift aptly named?
a. It causes allele frequencies to drift up or down randomly.
b. I...
Biological Science (6th Edition)
Match the people in column A to their contribution toward the advancement of microbiology, in column B. Column ...
Microbiology: An Introduction
Which type of cartilage is most plentiful in the adult body?
Anatomy & Physiology (6th Edition)
One isomer of methamphetamine is the addictive illegal drug known as crank. Another isomer is a medicine for si...
Campbell Essential Biology (7th Edition)
A Slice of pizza has 500 kcal. If we could burn the pizza and use all the heat to warm a 50-L container of cold...
Campbell Biology in Focus (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A long, thin rod of mass m = 5.00 kg and length = 1.20 m rotates around an axis perpendicular to the rod with an angularspeed of 3.00 rad/s. a. What is the angular momentum of therod if the axis passes through the rods midpoint? b. What is theangular momentum of the rod if the axis passes through a pointhalfway between its midpoint and its end?arrow_forwardA buzzard (m = 9.29 kg) is flying in circular motion with aspeed of 8.44 m/s while viewing its meal below. If the radius ofthe buzzards circular motion is 8.00 m, what is the angularmomentum of the buzzardaround the center of its motion?arrow_forwardA system consists of a disk of mass 2.0 kg and radius 50 cm upon which is mounted an annular cylinder of mass 1.0 kg with inner radius 20 cm and outer radius 30 cm (see below). The system rotates about an axis through the center of the disk and annular cylinder at 10 rev/s. (a) What is the moment of inertia of the system? (b) What is its rotational kinetic energy?arrow_forward
- If you know the velocity of a particle, can you say anything about the particle’s angular momentum?arrow_forwardTwo astronauts (Fig. P10.67), each having a mass M, are connected by a rope of length d having negligible mass. They are isolated in space, orbiting their center of mass at speeds v. Treating the astronauts as particles, calculate (a) the magnitude of the angular momentum of the two-astronaut system and (b) the rotational energy of the system. By pulling on the rope, one of the astronauts shortens the distance between them to d/2. (c) What is the new angular momentum of the system? (d) What are the astronauts new speeds? (e) What is the new rotational energy of the system? (f) How much chemical potential energy in the body of the astronaut was converted to mechanical energy in the system when he shortened the rope? Figure P10.67 Problems 67 and 68.arrow_forwardBig Ben (Fig. P10.17), the Parliament tower clock in London, has hour and minute hands with lengths of 2.70 m and 4.50 m and masses of 60.0 kg and 100 kg, respectively. Calculate the total angular momentum of these hands about the center point. (You may model the hands as long, thin rods rotating about one end. Assume the hour and minute hands are rotating at a constant rate of one revolution per 12 hours and 60 minutes, respectively.)arrow_forward
- While punting a football, a kicker rotates his leg about the hip joint. The moment of inertia of the leg is 3.75kgm2 and its rotational kinetic energy is 175 J. (a) What is the angular velocity of the leg? (b) What is the velocity of tip of the punter’s shoe if it is 1.05 m from the hip joint?arrow_forwardTwo astronauts (Fig. P10.67), each having a mass of 75.0 kg, are connected by a 10.0-m rope of negligible mass. They are isolated in space, orbiting their center of mass at speeds of 5.00 m/s. Treating the astronauts as particles, calculate (a) the magnitude of the angular momentum of the two-astronaut system and (b) the rotational energy of the system. By pulling on the rope, one astronaut shortens the distance between them to 5.00 m. (c) What is the new angular momentum of the system? (d) What are the astronauts new speeds? (e) What is the new rotational energy of the system? (f) How much chemical potential energy in the body of the astronaut was converted to mechanical energy in the system when he shortened the rope? Figure P10.67 Problems 67 and 68.arrow_forwardA solid cylinder of mass 2.0 kg and radius 20 cm is rotating counterclockwise around a vertical axis through its center at 600 rev/min. A second solid cylinder of the same mass and radius is rotating clockwise around the same vertical axis at 900 rev/min. If the cylinders couple so that they rotate about the same vertical axis, what is the angular velocity of the combination?arrow_forward
- The velocity of a particle of mass m = 2.00 kg is given by v= 5.10 + 2.40 m /s. What is the angular momentumof the particle around the origin when it is located atr= 8.60 3.70 m?arrow_forwardTwo particles of equal mass travel with the same speed in opposite directions along parallel lines separated by a distance d Show that the angular momentum of this two- particle system is the same no matter what point is used as the reference for calculating the angular momentum.arrow_forwardThe centrifuge at NASA Ames Research Center has a radius of 8.8 m and can produce farces on its payload of 20 gs or 20 times the force of gravity on Earth. (a) What is the angular momentum of a 20-kg payload that experiences 10 gs in the centrifuge? (b) If the driver motor was turned off in (a) and the payload lost 10 kg, what would be its new spin rate, taking into account there are no frictional forces present?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Moment of Inertia; Author: Physics with Professor Matt Anderson;https://www.youtube.com/watch?v=ZrGhUTeIlWs;License: Standard Youtube License