Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN: 9781305116399
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 10, Problem 10.8OQ
A constant net torque is exerted on an object. Which of the following quantities for the object cannot be constant? Choose all that apply. (a) angular position (b)
Expert Solution & Answer
Trending nowThis is a popular solution!
Chapter 10 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Ch. 10 - A rigid object rotates in a counterclockwise sense...Ch. 10 - Consider again the pairs of angular positions for...Ch. 10 - Ethan and Rebecca are riding on a merry-go-round....Ch. 10 - (i) If you are trying to loosen a stubborn screw...Ch. 10 - You turn off your electric drill and find that the...Ch. 10 - A section of hollow pipe and a solid cylinder have...Ch. 10 - A ball rolls without slipping down incline A,...Ch. 10 - A cyclist rides a bicycle with a wheel radius of...Ch. 10 - Consider an object on a rotating disk a distance r...Ch. 10 - A wheel is rotating about a fixed axis with...
Ch. 10 - A grindstone increases in angular speed from 4.00...Ch. 10 - Suppose a cars standard tires are replaced with...Ch. 10 - Figure OQ10.6 shows a system of four particles...Ch. 10 - As shown in Figure OQ10.7, a cord is wrapped onto...Ch. 10 - A constant net torque is exerted on an object....Ch. 10 - Prob. 10.9OQCh. 10 - A toy airplane hangs from the ceiling at the...Ch. 10 - A solid aluminum sphere of radius R has moment of...Ch. 10 - Is it possible to change the translational kinetic...Ch. 10 - Must an object be rotating to have a nonzero...Ch. 10 - Suppose just two external forces act on a...Ch. 10 - Explain how you might use the apparatus described...Ch. 10 - Example 10.6 Angular Acceleration of a Wheel A...Ch. 10 - Explain why changing the axis of rotation of an...Ch. 10 - Suppose you have two eggs, one hard-boiled and the...Ch. 10 - Suppose you set your textbook sliding across a...Ch. 10 - (a) What is the angular speed of the second hand...Ch. 10 - One blade of a pair of scissors rotates...Ch. 10 - If you see an object rotating, is there...Ch. 10 - If a small sphere of mass M were placed at the end...Ch. 10 - Three objects of uniform densitya solid sphere, a...Ch. 10 - Which of the entries in Table 10.2 applies to...Ch. 10 - Figure CQ10.15 shows a side view of a childs...Ch. 10 - A person balances a meterstick in a horizontal...Ch. 10 - (a) Find the angular speed of the Earths rotation...Ch. 10 - A potters wheel moves uniformly from rest to an...Ch. 10 - During a certain time interval, the angular...Ch. 10 - A bar on a hinge starts from rest and rotates with...Ch. 10 - A wheel starts from rest and rotates with constant...Ch. 10 - A centrifuge in a medical laboratory rotates at an...Ch. 10 - An electric motor rotating a workshop grinding...Ch. 10 - A machine part rotates at an angular speed of...Ch. 10 - A dentists drill starts from rest. After 3.20 s of...Ch. 10 - Why is the following situation impossible?...Ch. 10 - A rotating wheel requires 3.00 s to rotate through...Ch. 10 - The tub of a washer goes into its spin cycle,...Ch. 10 - A spinning wheel is slowed down by a brake, giving...Ch. 10 - Review. Consider a tall building located on the...Ch. 10 - A racing car travels on a circular track of radius...Ch. 10 - Make an order-of-magnitude estimate of the number...Ch. 10 - A discus thrower (Fig. P10.9) accelerates a discus...Ch. 10 - Figure P10.18 shows the drive train of a bicycle...Ch. 10 - A wheel 2.00 m in diameter lies in a vertical...Ch. 10 - A car accelerates uniformly from rest and reaches...Ch. 10 - A disk 8.00 cm in radius rotates at a constant...Ch. 10 - Prob. 10.22PCh. 10 - A car traveling on a flat (unbanked), circular...Ch. 10 - A car traveling on a flat (unbanked), circular...Ch. 10 - In a manufacturing process, a large, cylindrical...Ch. 10 - Review. A small object with mass 4.00 kg moves...Ch. 10 - Find the net torque on the wheel in Figure P10.14...Ch. 10 - The fishing pole in Figure P10.28 makes an angle...Ch. 10 - An electric motor turns a flywheel through a drive...Ch. 10 - A grinding wheel is in the form of a uniform solid...Ch. 10 - A 150-kg merry-go-round in the shape of a uniform,...Ch. 10 - Review. A block of mass m1 = 2.00 kg and a block...Ch. 10 - A model airplane with mass 0.750 kg is tethered to...Ch. 10 - A disk having moment of inertia 100 kg m2 is free...Ch. 10 - The combination of an applied force and a friction...Ch. 10 - Review. Consider the system shown in Figure P10.36...Ch. 10 - A potters wheela thick stone disk of radius 0.500...Ch. 10 - Imagine that you stand tall and turn about a...Ch. 10 - A uniform, thin, solid door has height 2.20 m,...Ch. 10 - Two balls with masses M and m are connected by a...Ch. 10 - Figure P10.41 shows a side view of a car tire...Ch. 10 - Following the procedure used in Example 10.7,...Ch. 10 - Three identical thin rods, each of length L and...Ch. 10 - Rigid rods of negligible mass lying along the y...Ch. 10 - The four particles in Figure P10.45 are connected...Ch. 10 - Many machines employ cams for various purposes,...Ch. 10 - A war-wolf or trebuchet is a device used during...Ch. 10 - A horizontal 800-N merry-go-round is a solid disk...Ch. 10 - Big Ben, the nickname for the clock in Elizabeth...Ch. 10 - Consider two objects with m1 m2 connected by a...Ch. 10 - The top in Figure P10.51 has a moment of inertia...Ch. 10 - Why is the following situation impossible? In a...Ch. 10 - In Figure P10.53, the hanging object has a mass of...Ch. 10 - Review. A thin, cylindrical rod = 24.0 cm long...Ch. 10 - Review. An object with a mass of m = 5.10 kg is...Ch. 10 - This problem describes one experimental method for...Ch. 10 - A uniform solid disk of radius R and mass M is...Ch. 10 - The head of a grass string trimmer has 100 g of...Ch. 10 - A cylinder of mass 10.0 kg rolls without slipping...Ch. 10 - A solid sphere is released from height h from the...Ch. 10 - (a) Determine the acceleration of the center of...Ch. 10 - A smooth cube of mass m and edge length r slides...Ch. 10 - A uniform solid disk and a uniform hoop are placed...Ch. 10 - A tennis ball is a hollow sphere with a thin wall....Ch. 10 - A metal can containing condensed mushroom soup has...Ch. 10 - As shown in Figure 10.13 on page 306, toppling...Ch. 10 - Review. A 4.00-m length of light nylon cord is...Ch. 10 - An elevator system in a tall building consists of...Ch. 10 - A shaft is turning at 65.0 rad/s at time t = 0....Ch. 10 - A shaft is turning at angular speed at time t =...Ch. 10 - Review. A mixing beater consists of three thin...Ch. 10 - The hour hand and the minute hand of Big Ben, the...Ch. 10 - A long, uniform rod of length L and mass M is...Ch. 10 - A bicycle is turned upside down while its owner...Ch. 10 - A bicycle is turned upside down while its owner...Ch. 10 - Prob. 10.76APCh. 10 - Review. As shown in Figure P10.77, two blocks are...Ch. 10 - Review. A string is wound around a uniform disk of...Ch. 10 - The reel shown in Figure P10.79 has radius R and...Ch. 10 - A common demonstration, illustrated in Figure...Ch. 10 - A uniform solid sphere of radius r is placed on...Ch. 10 - Review. A spool of wire of mass M and radius R is...Ch. 10 - A solid sphere of mass m and radius r rolls...Ch. 10 - A thin rod of mass 0.630 kg and length 1.24 m is...Ch. 10 - Prob. 10.85APCh. 10 - Review. A clown balances a small spherical grape...Ch. 10 - A plank with a mass M = 6.00 kg rests on top of...Ch. 10 - As a gasoline engine operates, a flywheel turning...Ch. 10 - As a result of friction, the angular speed of a...Ch. 10 - To find the total angular displacement during the...Ch. 10 - A spool of thread consists of a cylinder of radius...Ch. 10 - A cord is wrapped around a pulley that is shaped...Ch. 10 - A merry-go-round is stationary. A clog is running...Ch. 10 - A uniform, hollow, cylindrical spool has inside...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A disk with moment of inertia I1 rotates about a frictionless, vertical axle with angular speed i. A second disk, this one having moment of inertia I2 and initially not rotating, drops onto the first disk (Fig. P10.50). Because of friction between the surfaces, the two eventually reach the same angular speed f. (a) Calculate f. (b) Calculate the ratio of the final to the initial rotational energy. Figure P10.50arrow_forwardRigid rods of negligible mass lying along the y axis connect three particles (Fig. P10.18). The system rotates about the x axis with an angular speed of 2.00 rad/s. Find (a) the moment of inertia about the x axis, (b) the total rotational kinetic energy evaluated from 12I2, (c) the tangential speed of each particle, and (d) the total kinetic energy evaluated from 12mivi2. (e) Compare the answers for kinetic energy in parts (b) and (d). Figure P10.18arrow_forwardA constant net torque is exerted on an object. Which of the following quantities for the object cannot be constant? Choose all that apply. (a) angular position (b) angular velocity (c) angular acceleration (d) moment of inertia (e) kinetic energyarrow_forward
- A turntable (disk) of radius r = 26.0 cm and rotational inertia0.400 kg m2 rotates with an angular speed of 3.00 rad/s arounda frictionless, vertical axle. A wad of clay of mass m =0.250 kg drops onto and sticks to the edge of the turntable.What is the new angular speed of the turntable?arrow_forwardA playground merry-go-round of radius R = 2.00 m has a moment of inertia I = 250 kg m2 and is rotating at 10.0 rev/min about a frictionless, vertical axle. Facing the axle, a 25.0-kg child hops onto the merry-go-round and manages to sit down on the edge. What is the new angular speed of the merry-go-round?arrow_forwardA constant net torque is applied to an object. Which one of the following will not be constant? (a) angular acceleration, (b) angular velocity, (c) moment of inertia, or (d) center of gravity.arrow_forward
- Consider an object on a rotating disk a distance r from its center, held in place on the disk by static friction. Which of the following statements is not true concerning this object? (a) If the angular speed is constant, the object must have constant tangential speed. (b) If the angular speed is constant, the object is not accelerated. (c) The object has a tangential acceleration only if the disk has an angular acceleration. (d) If the disk has an angular acceleration, the object has both a centripetal acceleration and a tangential acceleration. (e) The object always has a centripetal acceleration except when the angular speed is zero.arrow_forwardAnswer yes or no to the following questions. (a) Is it possible to calculate the torque acting on a rigid object without specifying an axis of rotation? (b) Is the torque independent of the location of the axis of rotation?arrow_forwardA student sits on a freely rotating stool holding two dumbbells, each of mass 3.00 kg (Fig. P10.56). When his arms are extended horizontally (Fig. P10.56a), the dumbbells are 1.00 m from the axis of rotation and the student rotates with an angular speed of 0.750 rad/s. The moment of inertia of the student plus stool is 3.00 kg m2 and is assumed to be constant. The student pulls the dumbbells inward horizontally to a position 0.300 m from the rotation axis (Fig. P10.56b). (a) Find the new angular speed of the student. (b) Find the kinetic energy of the rotating system before and after he pulls the dumbbells inward. Figure P10.56arrow_forward
- The hour hand and the minute hand of Big Ben, the Parliament tower clock in London, are 2.70 m and 4.50 m long and have masses of 60.0 kg and 100 kg, respectively (see Fig. P10.17). (a) Determine the total torque due to the weight of these hands about the axis of rotation when the time reads (i) 3:00, (ii) 5:15, (iii) 6:00, (iv) 8:20, and (v) 9:45. (You may model the hands as long, thin, uniform rods.) (b) Determine all times when the total torque about the axis of rotation is zero. Determine the times to the nearest second, solving a transcendental equation numerically.arrow_forwardA student rides his bicycle at a constant speed of 3.00 m/s along a straight, level road. If the bikes tires each have a radius of 0.350 m, (a) what is the tires angular speed? (See Section 7.3.) (b) What is the net torque on each tire? (See Section 8.5.)arrow_forwardIn testing an automobile tire for proper alignment, a technicianmarks a spot on the tire 0.200 m from the center. He then mountsthe tire in a vertical plane and notes that the radius vector to thespot is at an angle of 35.0 with the horizontal. Starting from rest,the tire is spun rapidly with a constant angular acceleration of 3.00 rad/s2. a. What is the angular speed of the wheel after 4.00 s? b. What is the tangential speed of the spot after 4.00 s? c. What is the magnitude of the total accleration of the spot after 4.00 s?" d. What is the angular position of the spot after 4.00 s?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
What is Torque? | Physics | Extraclass.com; Author: Extraclass Official;https://www.youtube.com/watch?v=zXxrAJld9mo;License: Standard YouTube License, CC-BY