College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Review. A block of mass m1 = 2.00 kg and a block of mass m2 = 6.00 kg are connected by a massless string over a pulley in the shape of a solid disk having radius R = 0.250 m and mass M = 10.0 kg. The fixed, wedge-shaped ramp makes an angle of θ = 30.0° as shown in Figure P10.16. The coefficient of kinetic friction is 0.360 for both blocks. (a) Draw force diagrams of both blocks and of the pulley. Determine (b) the acceleration of the two blocks and (c) the tensions in the string on both sides of the pulley.
Figure P10.16
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 4 steps with 9 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A wheel of radius 0.427 m is mounted on a frictionless horizontal axis. The rotational inertia of the wheel about the axis is 0.0156 kg·m2. A massless cord wrapped around the wheel is attached to a 3.02 kg block that slides on a horizontal frictionless surface. If a horizontal force of magnitude P = 9.18 N is applied to the block as shown in the figure, what is the angular acceleration of the wheel? Take the clockwise direction to be the negative direction and assume the string does not slip on the wheel.arrow_forwarda small 0.383 kg block slides down a frictionless surface through height h = 0.752 m and then sticks to a uniform vertical rod of mass M = 0.766 kg and length d = 2.34 m. The rod pivots about point O through angle θ before momentarily stopping. Find θ.arrow_forwardA solid disk of uniform density and mass M = 0.950 kg with radius R = 0.250 m is suspended vertically and is free to rotate about its center without friction. A point object that has the same mass as the disk is placed at an angle 0 = 25.0° clockwise from the top along the rim, causing the disk to rotate. The acceleration due to gravity is g=9.81m/s². What is the angular speed wf of the disk when the point object is directly below the center of the disk? R 0.arrow_forward
- A skater is spinning about a fixed symmetrical vertical axis. When she lifts her arms above her head, her moment of inertia about this axis of rotation drops from 12.0 kg m2 to 8.00 kg m2. What is the ratio of her final rotational energy and her initial rotational energy?arrow_forwardA person pushes on a lever 0.7 meters away from the axis of rotation with 100 N of force. The rotational inertia of the lever is 35 kg*m2. Calculate the angular acceleration of the lever.arrow_forwardA uniform rod is set up so that it can rotate about an axis at perpendicular to one of its ends. The length and mass of the rod are 0.893 m and 1.19 kg, respectively. A force of constant magnitude F acts on the rod at the end opposite the rotation axis. The direction of the force is perpendicular to both the rod's length and the rotation axis. Calculate the value of F that will accelerate the rod from rest to an angular speed of 6.31 rad/s in 8.87 s. F = Narrow_forward
- One end of a cord is fixed and a small 0.400-kg object is attached to the other end, where it swings in a section of a vertical circle of radius 1.50 m, as shown in the figure below. When θ = 23.0°, the speed of the object is 5.50 m/s. An object is swinging to the right and upward from the end of a cord attached to a horizontal surface. The cord makes an angle θ with the vertical. An arrow labeled vector v points in the direction of motion. (a) At this instant, find the magnitude of the tension in the string.Your response is within 10% of the correct value. This may be due to roundoff error, or you could have a mistake in your calculation. Carry out all intermediate results to at least four-digit accuracy to minimize roundoff error. N(b) At this instant, find the tangential and radial components of acceleration. at = Your response differs from the correct answer by more than 100%. m/s2 downward tangent to the circle ac = Your response differs from the correct answer by more…arrow_forwardConsider two boxes initially at rest as shown, each of mass 5.0 kg, that are connected by a massless string over a pulley of radius 5.0 cm and rotational inertia equal to 4.0 x 10-3 kg·m². The coefficient of kinetic friction between the inclined surface and the box is 0.15. Find the speed of the boxes just after they have moved 1.0 m. Justify approach taken as you begin your solution. 30° m marrow_forwardA turntable (disk) of radius r = 27.0 cm and rotational inertia 0.440 kg · m2 rotates with an angular speed of 2.98 rad/s around a frictionless, vertical axle. A wad of clay of mass m = 0.242 kg drops onto and sticks to the edge of the turntable. What is the new angular speed of the turntable? (A) _______ rad/sarrow_forward
- Two blocks are connected by massless string that is wrapped around a pulley. Block 1 has a mass m1=6.00 kg, block 2 has a mass m2=2.00 kg, while the pulley has a mass of 1.00 kg and a radius of 18.0 cm. When the pulley turns, there is friction in the axel that exerts a torque of magnitude 0.410 N m. If block 1 is released from rest at a height h=1.40 m, how long does it take to drop to the floor?arrow_forwardA tire is tied to a rope that is tied to the branch of a tree so that the tire swings in a circular trajectory of radius h1 = 15.31 m. A child takes the tire to the top of a platform that is a height h2 = 12.60 m above the ground, sits in the tire, and swings from rest from the platform. The combined mass of the tire and child is 36 kg. The rope is taut when the child leaves the platform and you may neglect the mass of the rope. At the bottom of the circular trajectory, the child and tire are a height h3 = 0.99 m above the ground. include a diagram showing the physical sites (a) Calculate the speed of the child/tire at the bottom of the circular trajectory. m/s (b) Calculate the maximum tension in the rope as the child/tire swing back and forth. Narrow_forwardA uniform rod is set up so that it can rotate about an axis at perpendicular to one of its ends. The length and mass of the rod are 0.765 m and 1.27 kg respectively. A force of constant magnitude ?F acts on the rod at the end opposite the rotation axis. The direction of the force is perpendicular to both the rod's length and the rotation axis. Calculate the value of ?F that will accelerate the rod from rest to an angular speed of 6.21 rad/s in 9.91 sarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON