Microelectronic Circuits (the Oxford Series In Electrical And Computer Engineering)
Microelectronic Circuits (the Oxford Series In Electrical And Computer Engineering)
8th Edition
ISBN: 9780190853464
Author: Adel S. Sedra, Kenneth C. (kc) Smith, Tony Chan Carusone, Vincent Gaudet
Publisher: Oxford University Press
Question
Book Icon
Chapter 1, Problem D1.57P

(a)

To determine

The output voltage for a given voltage amplifier.

(b)

To determine

The voltage gain from source to load for a given voltage amplifier.

(c)

To determine

The voltage gain from amplifier input to load for given voltage amplifier.

(d)

To determine

To draw: The modified circuit diagram by adding an additional resistance R for twice output voltage with saturation in the amplifier and calculating the value of the resistance.

Blurred answer
Students have asked these similar questions
Suppose we have a resistive load that varies from 5 kΩ to 10 kΩ .We connect this load to an amplifier, and we need the voltage across the load to vary by less than 1 percent with variations in the load resistance. What parameter of the amplifier is important in this situation? What range of values is allowed for the parameter?
b. Your high-fidelity amplifier has one output for a speaker whose resistance is 8 0. How can you arrange two 8-Q speakers, one 4-0 speaker, and one 12-0 speaker so that all are powered by the amplifier and their equivalent resistance when connected together in this way is exactly 8 Q. Draw the circuit diagram and support it with computation.
4. A common-source amplifier is based by R₁ and R₂ as shown below. Assume VTHN= |VTHP|= 0.6 V, AN=2p= 0.05 V-¹, and unCox= 200 μA/V² and upCox= 100 μA/V² (a) Assume Ibias = 0.1 mA. Determine R₁ and R₂ to set Vx as 1 V. Also, determine the drain current ID. Neglect channel-length modulation in the calculation. (b) Based on the obtained Ip in (a). Design Rp to achieve the maximum allow gain of this amplifier. Also, determine the small-signal gain Vout/Vin under this condition. (c) If RD is replaced by a PMOS (W/L= 400) as an active load (biased in the saturation region), plot the small-signal model and determine the small-signal gain of the amplifier. Assume ID is kept the same as in (a). How about if the PMOS is replaced by an idea current source of ID? Determine the small-signal gain under this condition. VDD= 2.5 V Vin R₁ bias R₂ RD VX|| ID out W/L= 200 R₁ Ibias Vino R₂ VDD= 2.5 V m voll _% W/L= 400 Vout W/L= 200

Chapter 1 Solutions

Microelectronic Circuits (the Oxford Series In Electrical And Computer Engineering)

Ch. 1.4 - Prob. 1.11ECh. 1.5 - Prob. 1.12ECh. 1.5 - Prob. 1.13ECh. 1.5 - Prob. 1.14ECh. 1.5 - Prob. 1.15ECh. 1.5 - Prob. 1.16ECh. 1.5 - Prob. 1.17ECh. 1.5 - Prob. 1.18ECh. 1.5 - Prob. 1.19ECh. 1.5 - Prob. 1.20ECh. 1.5 - Prob. 1.21ECh. 1.6 - Prob. 1.22ECh. 1.6 - Prob. D1.23ECh. 1.6 - Prob. D1.24ECh. 1 - Prob. 1.1PCh. 1 - Prob. 1.2PCh. 1 - Prob. 1.3PCh. 1 - Prob. 1.4PCh. 1 - Prob. 1.5PCh. 1 - Prob. 1.6PCh. 1 - Prob. 1.7PCh. 1 - Prob. D1.8PCh. 1 - Prob. D1.9PCh. 1 - Prob. 1.10PCh. 1 - Prob. 1.11PCh. 1 - Prob. D1.12PCh. 1 - Prob. D1.13PCh. 1 - Prob. D1.14PCh. 1 - Prob. 1.15PCh. 1 - Prob. 1.16PCh. 1 - Prob. 1.17PCh. 1 - Prob. 1.18PCh. 1 - Prob. 1.19PCh. 1 - Prob. 1.20PCh. 1 - Prob. 1.21PCh. 1 - Prob. 1.22PCh. 1 - Prob. 1.23PCh. 1 - Prob. 1.24PCh. 1 - Prob. 1.25PCh. 1 - Prob. 1.26PCh. 1 - Prob. 1.27PCh. 1 - Prob. 1.28PCh. 1 - Prob. 1.29PCh. 1 - Prob. 1.30PCh. 1 - Prob. 1.31PCh. 1 - Prob. 1.32PCh. 1 - Prob. 1.33PCh. 1 - Prob. 1.34PCh. 1 - Prob. 1.35PCh. 1 - Prob. 1.36PCh. 1 - Prob. 1.37PCh. 1 - Prob. 1.38PCh. 1 - Prob. 1.39PCh. 1 - Prob. 1.40PCh. 1 - Prob. 1.41PCh. 1 - Prob. 1.42PCh. 1 - Prob. 1.43PCh. 1 - Prob. 1.44PCh. 1 - Prob. 1.45PCh. 1 - Prob. 1.46PCh. 1 - Prob. 1.47PCh. 1 - Prob. 1.48PCh. 1 - Prob. 1.49PCh. 1 - Prob. 1.50PCh. 1 - Prob. 1.51PCh. 1 - Prob. 1.52PCh. 1 - Prob. 1.53PCh. 1 - Prob. D1.54PCh. 1 - Prob. D1.55PCh. 1 - Prob. D1.56PCh. 1 - Prob. D1.57PCh. 1 - Prob. 1.58PCh. 1 - Prob. 1.59PCh. 1 - Prob. 1.60PCh. 1 - Prob. D1.61PCh. 1 - Prob. 1.62PCh. 1 - Prob. D1.63PCh. 1 - Prob. D1.64PCh. 1 - Prob. 1.65PCh. 1 - Prob. 1.66PCh. 1 - Prob. 1.67PCh. 1 - Prob. 1.68PCh. 1 - Prob. 1.69PCh. 1 - Prob. 1.70PCh. 1 - Prob. 1.71PCh. 1 - Prob. D1.72PCh. 1 - Prob. 1.75PCh. 1 - Prob. 1.76PCh. 1 - Prob. D1.77PCh. 1 - Prob. D1.78PCh. 1 - Prob. 1.79PCh. 1 - Prob. 1.80PCh. 1 - Prob. D1.81PCh. 1 - Prob. 1.82PCh. 1 - Prob. 1.83P
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning