BIOCHEMISTRY
BIOCHEMISTRY
9th Edition
ISBN: 2818440090622
Author: BERG
Publisher: MAC HIGHER
Question
Book Icon
Chapter 1, Problem 22P
Interpretation Introduction

Interpretation: The pH of the solution of sodium acetate with concentration of 0.1 M and 0.01 M is to be determined with varying volume of HCl added to it.

Concept introduction: To calculate the pH of the solution Henderson and Hasselbalch equation is used. The expression is as given below,

  pH=pKa+log[Base][Acid]

Where,

  • pKa is dissociation constant.
  • [Base] is the concentration of base.
  • [Acid] is the concentration of acid.

Expert Solution & Answer
Check Mark

Answer to Problem 22P

The pH values when different concentrations of HCl is added to the 0.1 M sodium acetate is 6.33, 6.02, 5.69, and 4.74. While in case of 0.01 M sodium acetate it is 5.22, 4.74, 3.54 and 1.35.

Explanation of Solution

In the given condition there are two cases which is mentioned as below,

Case I-

Concentration of first solution is 0.1 M and the concentrations of HCl added to this solution is 0.0025 M , 0.005 M , 0.01 M and 0.05 M .

Case II-

Concentration of the other solution is 0.01 M and the concentrations of HCl added to this solution is 0.0025 M , 0.005 M , 0.01 M and 0.05 M .

The volume is not provided; consider the volume of the buffer to be 1 L .

To calculate pH we need the Henderson−Hasselbalch equation which is as given below,

  pH=pKa+log[CH3COO][CH3COOH]   ....... (1)

Where,

  • pKa is dissociation constant.
  • [CH3COO] is the concentration of CH3COO ion.
  • [CH3COOH] is the concentration of CH3COOH acid.

For the first case,

   (a) Concentration of sodium acetate is 0.1 M and 0.0025 MHCl is added to it.

The reaction can be given as,

  CH3COO-(aq)+HCl(aq)CH3COOH(aq)+Cl-(aq)

The concentration of CH3COO- after the reaction will be,

  [CH3COO]=0.10.0025[CH3COO]=0.0975

Substitute the values to equation (1),

  pH=4.74+log[0.0975][0.0025]pH=4.74+log39=4.74+1.591=6.33

The pH of the solution will be 6.33.

For the first case,

   (b)Concentration of sodium acetate is 0.1 M and 0.005 MHCl is added to it.

The reaction can be given as,

  CH3COO-(aq)+HCl(aq)CH3COOH(aq)+Cl-(aq)

The concentration of CH3COO after the reaction will be,

  [CH3COO]=0.10.005[CH3COO]=0.095

Substitute the value to equation (1),

  pH=4.74+log[0.095][0.005]pH=4.74+log19=4.74+1.2787=6.02

The pH of the solution will be 6.02.

For the first case,

   (c) Concentration of sodium acetate is 0.1 M and 0.01 MHCl is added to it.

The reaction can be given as,

  CH3COO-(aq)+HCl(aq)CH3COOH(aq)+Cl-(aq)

The concentration of CH3COO after the reaction will be,

  [CH3COO]=0.10.01[CH3COO]=0.09

Substitute the value to equation (1),

  pH=4.74+log[0.09][0.01]pH=4.74+log9=4.74+0.9542=5.69

The pH of the solution will be 5.69.

For the first case,

   (d) Concentration of sodium acetate is 0.1 M and 0.05 MHCl is added to it.

The reaction can be given as,

  CH3COO-(aq)+HCl(aq)CH3COOH(aq)+Cl-(aq)

The concentration of CH3COO after the reaction will be,

  [CH3COO]=0.10.05[CH3COO]=0.05

Substitute the value to equation (1),

  pH=4.74+log[0.05][0.05]pH=4.74+log1=4.74+0=4.74

The pH of the solution will be 4.74.

For the second case,

   (a) Concentration of sodium acetate is 0.01 M and 0.0025 MHCl is added to it.

The reaction can be given as,

  CH3COO-(aq)+HCl(aq)CH3COOH(aq)+Cl-(aq)

The concentration of CH3COO after the reaction will be,

  [CH3COO]=0.010.0025=0.0075

Substitute the value to equation (1),

  pH=4.74+log[0.0075][0.0025]=4.74+log3=5.22

The pH of the solution will be 5.22.

For the second case,

   (b) Concentration of sodium acetate is 0.01 M and 0.005 Mis added to it.

The reaction can be given as,

  CH3COO-(aq)+HCl(aq)CH3COOH(aq)+Cl-(aq)

The concentration of CH3COO after the reaction will be,

  [CH3COO]=0.010.005=0.005

Substitute the value to equation (1),

  pH=4.74+log[0.005][0.005]=4.74+log(1)=4.74

The pH of the solution will be 4.74.

For the second case,

   (c) Concentration of sodium acetate is 0.01 M and 0.01 MHCl is added to it.

The reaction can be given as,

  CH3COO-(aq)+HCl(aq)CH3COOH(aq)+Cl-(aq)

The concentration of CH3COO after the reaction will be,

  [CH3COO]=0.010.01=0

So, moles of acetic acids are 0.01 mole.

Concentration of acetic acid is:

  [CH3COOH]=0.01 mole1 L+1 L= 0.005 M (volume of salt and acid is the volume of solution)

The equation of Ka is given as,

  Ka=[CH3COO][H+][CH3COOH]   ....... (2)

Where,

  • Ka is dissociation constant.
  • [CH3COO] is the concentration of CH3COO ion.
  • [CH3COOH] is the concentration of CH3COOH acid.
  • [H+] is the concentration of hydrogen ion.

Substitute the values in the equation (2),

  1.8×105=[x][x][0.005x]

Rearrange for x,

  x21.8×105(0.005x)=0x=2.9×104

Substitute the value of x in equation of pH ,

  pH=log(2.9× 10 4)=3.54

The pH of the solution will be 3.54.

For the second case,

   (d) Concentration of sodium acetate is 0.01 M and 0.05 M HCl is added to it.

The reaction can be given as,

  CH3COO-(aq)+HCl(aq)CH3COOH(aq)+Cl-(aq)

In this case, the HCl is a strong acid and the formed acetic acid is a weak acid. Thus, HCl dominates the acidity. (Also the concentration of acetic acid is small).

The concentration of H+ after the reaction will be,

  [H+]=0.050.005=0.045

Substitute the value of concentration of hydrogen ion into pH expression we get,

  pH=log(0.045)=1.35

The pH of the solution will be 1.35

Conclusion

Thus the pH values when different concentrations of HCl is added to the 0.1 M sodium acetate is 6.33, 6.03, 5.69, and 4.74. While in case of 0.01 M sodium acetate it is 5.21, 4.74, 3.54 and 1.35.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Substituent effects. What is the pHPpH of a 0.1 M0.1 M solution of chloroacetic acid (CICH2 COOH, pKa=2.86)? (CICH, COOH, pK, = 2.86) ? do
Be sure to answer all parts. Tris [tris(hydroxymethyl)aminomethane] is a common buffer for studying biological systems. (K, = 5.01 x 109 and pk, 8.3) %3D %3D (a) Calculate the pH of the Tris buffer after mixing 10.5 mL of 0.20 M HCI solution with 25.0 mL of 0.10 M Tris. 7.06 (b) This buffer was used to study an enzyme-catalyzed reaction. As a result of the reaction, 0.00020 mol of H* was produced. What is the pH of the buffer at the end of the reaction? (c) What would be the final pH if no buffer were present?
Paraphrasing Tool . medicinal meet Mniversity of Nizwa pKa of flurazepam is 8.71. Ifthe pH of the stomach is 3.5 and that of intestine is 6.0 then oral flurazepam will be t of Flurazepam Select one: a. ionized in the stomach and neutral in the intestine O b. neutral in the stomach and ionized in the intestine O c. ionized in both the stomach and the intestine O d. neutral in both the stomach and the intestine Which of the following molecules is neutral?
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Biochemistry
Biochemistry
ISBN:9781319114671
Author:Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.
Publisher:W. H. Freeman
Text book image
Lehninger Principles of Biochemistry
Biochemistry
ISBN:9781464126116
Author:David L. Nelson, Michael M. Cox
Publisher:W. H. Freeman
Text book image
Fundamentals of Biochemistry: Life at the Molecul...
Biochemistry
ISBN:9781118918401
Author:Donald Voet, Judith G. Voet, Charlotte W. Pratt
Publisher:WILEY
Text book image
Biochemistry
Biochemistry
ISBN:9781305961135
Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougal
Publisher:Cengage Learning
Text book image
Biochemistry
Biochemistry
ISBN:9781305577206
Author:Reginald H. Garrett, Charles M. Grisham
Publisher:Cengage Learning
Text book image
Fundamentals of General, Organic, and Biological ...
Biochemistry
ISBN:9780134015187
Author:John E. McMurry, David S. Ballantine, Carl A. Hoeger, Virginia E. Peterson
Publisher:PEARSON