Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 7 steps
Knowledge Booster
Similar questions
- 2. The position of a drone as a function of time is given by *(t) = ( 8 i + 1.5 k) + (-3 î + 2 j) t – 0.5 t2 j The units are missing in the constant coefficients above, i.e., "0.5" should be "0.5 m/s2". Include the correct units on all the constant coefficients in your answers below. a. What is the x-position of the drone as a function of time? b. What is the y-position of the drone as a function of time? c. How far away is the drone from its starting position at t = 3s? d. What is the acceleration vector? е. What is the velocity vector as a function of time? (One way to do this is to take the time derivative of the position vector.) f. Make a sketch of the x, y, and z positions of the drone as function of time. You just need the general shape. time time timearrow_forward6. A train is moving with a constant speed. The train moves 60 meters for every 1.5 seconds that elapses. a. Assume that we get 40 by dividing 60 by 1.5. What is the name that is commonly given to a quantity represented by this number 40? b. To denote the quantity completely, what additional information must be given besides the number 40? c. How would you interpret the number 40 in this instance? Your answer should mention distance and time. d. Use your interpretation (not algebra) to find the distance the train moves in 2.5 seconds.arrow_forwardA stone is thrown straight up from the edge of a roof, 650650 feet above the ground, at a speed of 1616 feet per second.A. Remembering that the acceleration due to gravity is −32ft/sec2−32ft/sec2, how high is the stone 55 seconds later?B. At what time does the stone hit the ground?C. What is the velocity of the stone when it hits the ground?arrow_forward
- Question 4 A stretched string of length 50 cm is plucked a quarter of the way along its length to give an initial velocity of 10 m/s. Find expressions for the coefficients an and bn. a. an = 0 bn = 0 -0.5 b. an = 0.25 y(x,0) sin(kx)dx, b₁ = 0 4 0.5 = c. an = 0, bn foy(x,0) sin(kx) dx @n 4 -0.5 d. an = So y(x,0) sin(kx) dx, y(x,0)sin(kx)dx Wn b₁ =0.255 0arrow_forwardAn 800kg roller coaster traveling at 10m/s is 80m above the bottom of the track. a. How fast is the roller coaster car traveling at the bottom of the hill? b. How fast is the roller coaster car traveling at the top of the loop?arrow_forward1. A block of mass m is pushed against (but not attached to) a spring with stiffness k so that the spring is compressed a distance Ar. When released, the block slides across the frictionless surface of a shelf a height h above the floor, the then falls to the floor. a. What is the speed of the block at the moment it leaves the shelf? V2 = b. What is the speed of the block at the moment just before it hits the ground? Vr =arrow_forward
- A remote-controlled car is moving in a vacant parking lot. The velocity of the car as a function of time is given by v⃗ =[ 5.00m/s − (0.0180m/s3) t2 ] i + [ 2.00m/s + (0.550m/s2) t ] j . a. What is the magnitude of the velocity of the car at t = 8.00 s? b. What is the direction (in degrees counterclockwise from + x-axis) of the velocity of the car at t = 8.00 s? c. What is the magnitude of the acceleration of the car at t = 8.00 s? d. What is the direction (in degrees counterclockwise from + x-axis) of the acceleration of the car at t = 8.00 s?arrow_forwardDon't give handwritten solution and don't copy other's content.arrow_forwardC D Earrow_forward
arrow_back_ios
arrow_forward_ios