College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
thumb_up100%
"You attach a cart with a mass of 0.92 kg to a spring and compress the cart-spring system. The spring constant for the spring is 130 N/m. Your objective is to propel the cart with a velocity of 1.4 m/s along a frictionless surface. How far do you need to compress the spring in order to meet your target velocity?"
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question
Why was m converted to cm?
Solution
by Bartleby Expert
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question
Why was m converted to cm?
Solution
by Bartleby Expert
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Can someone help me with this question please?arrow_forwardThe hill is covered in gravel so that the truck's wheels will slide up the hill instead of rolling up the hill. The coefficient of kinetic friction between the tires and the gravel is μk. This design has a spring at the top of the ramp that will help to stop the trucks. This spring is located at height h. The spring will compress until the truck stops, and then a latch will keep the spring from decompressing (stretching back out). The spring can compress a maximum distance x because of the latching mechanism. Your job is to determine how strong the spring must be. In other words, you need to find the spring constant so that a truck of mass mt, moving at an initial speed of v0, will be stopped. For this problem, it is easiest to define the system such that it contains everything: Earth, hill, truck, gravel, spring, etc. In all of the following questions, the initial configuration is the truck moving with a speed of v0 on the level ground, and the final configuration is the truck stopped…arrow_forwardA spring-powered launcher has a spring with a constant of 50.0 N/cm. The launcher is prepared by compressing the spring by 5.00 cm. If the mass of the projectile is 10.0 grams, what is the speed of the projectile when it is launched? Multiple Choice 35.4 m/s 65.4 m/s 52.8 m/s 40.5 m/s 45.7 m/sarrow_forward
- A 6.50 ✕ 105 kg subway train is brought to a stop from a speed of 0.500 m/s in 0.600 m by a large spring bumper at the end of its track. What is the force constant k of the spring (in N/m)?arrow_forwardA 12 kg block is released from point A as shown in the figure. Its path from A to the spring is frictionless except for the portion between B and C. When the block hits the spring, it compresses the spring by 0.3 m from its equilibrium position before coming to rest momentarily. Find the coefficient of kinetic friction between the block and the rough surface between points B and C. Assume the spring constant is 2300 N/m.arrow_forward3.50 ✕ 105 kg subway train is brought to a stop from a speed of 0.500 m/s in 0.900 m by a large spring bumper at the end of its track. What is the force constant k of the spring?N/marrow_forward
- The spring force is initially greater than friction, so the block accelerates forward. But eventually the spring force decreases enough so that it is le (decelerates). In a physics lab experiment, one end of a horizontal spring that obeys Hooked's law is attached to a wall. The spring is compressed æo = 0.400 m, and a block with mass 0.300 kg is attached to horizontal surface. Electronic sensors measure the speed v of the block after it has traveled a distance d from its initial position against the compressed spring. The measured The spring is then released, and the block moves along a O The spring force is always less than friction, so the block decelerates all the time. values are listed in the table below. Submit Previous Answers d (m) v (m/s) v Correct 0.05 0.85 0.10 1.11 Part B 0.15 1.24 0.25 1.26 Use the work-energy theorem to derive an expression for v? in terms of d. Do not substitute the value of æo into the expression. 0.30 1.14 0.35 0.90 Express your answer in terms of some…arrow_forward68. A block of mass 12.0 kg slides from rest down a friction- less 35.0° incline and is stopped by a strong spring with k = 3.00 x 104 N/m. The block slides 3.00 m from the point of release to the point where it comes to rest against the spring. When the block comes to rest, how far has the spring been compressed?arrow_forwardThe cable of the 1800.0-kg elevator cab in the figure below snaps when the cab is at rest at the first floor where the cab bottom is a distance d = 3.70 m above a spring of spring constant k = 150,000 N/m. A safety device clamps the cab against guide rails so that a constant frictional force of 4,400 N opposes the cab's motion. Find the maximum distance that the spring is compressed. Assume that the frictional force still acts during this compression.arrow_forward
- A block of mass, m 3.30 kg, slides along a frictionless surface. It starts with a velocity, vo = 8.50 m/s. It then encounters a rough surface for a distance, d 2.65 m, where there is a coefficient of kinetic friction, µk = 0.620. At the end, it hits a spring, which it compresses by a displacement, Ax = 10.5 cm, until it comes to a stop. Assume the spring itself is massless. Ax -> a) How much kinetic energy (in joules) does the block have initially? b) How much work (in joules) does the friction from the rough surface do on the block? c) After leaving the rough patch, the block slides without friction again. With what speed (in m/s) does the block hit the spring? d) What is the spring constant (in N/m)? e) When the spring pushes the block back in the opposite direction, will it be able to slide all the way to the opposite end of the rough patch? Justify your answer numerically. Upload Choose a Filearrow_forwardA block of mass 0.5 kg is initially resting against the spring, compressing the spring at a distance of 15 cm. If the spring constant is 400 N/m, what is the distance the block travels on the incline when it momentarily comes to rest? Consider the horizontal surface and the incline as frictionless surfaces. 0.5kg 30.0°arrow_forwardA block of mass 165 grams is placed on top of a light vertical spring, which is compressed by 7.25 cm. When the block is released from rest, it travels upward and leaves the spring to a maximum height of 14.4 m. What is the force constant of the spring?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON