College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A spring-loaded gun fires a 0.090-kg puck along a tabletop. The puck slides up a curved ramp and flies straight up into the air. If the spring is displaced 23.0 cm from equilibrium and the spring constant is 875 N/m, how high does the puck rise, neglecting friction?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 6.00 ✕ 105 kg subway train is brought to a stop from a speed of 0.500 m/s in 0.400 m by a large spring bumper at the end of its track. What is the force constant k of the spring (in N/m)? (Enter a number.)arrow_forwardA toy gun uses a spring to project a 6.2-g soft rubber sphere horizontally. The spring constant is 8.0 N/m, the barrel of the gun is 12 cm long, and a constant frictional force of 0.039 N exists between barrel and projectile. With what speed does the projectile leave the barrel if the spring was compressed 5.7 cm for this launch? (Assume the projectile is in contact with the barrel for the full 12 cm.)arrow_forwardA 0.100 kg block of ice is placed against a horizontal, compressed spring mounted on a horizontal tabletop that is 1.50 m above the floor. The spring has force constant 2000 N/m and is initially compressed 0.045 m. The mass of the spring is negligible. The spring is released, and the block slides along the table, goes off the edge, and travels to the floor. If there is negligible friction between the block of ice and the tabletop, what is the speed of the block of ice when it reaches the floor?arrow_forward
- A block with mass m = 12.4 kg is pressed against a spring with spring constant 1.285E+4 N/m, compressing the spring a distance of 0.115 m. It is then released from rest, moves across a frictionless horizontal surface, down a frictionless hill (vertical height h = 9.29 m), and onto a horizontal surface with friction μk = 0.638. How far (in m) will the block slide across the horizontal frictional surface before coming to rest?arrow_forwardA spring project uses a plastic ball. (a) With what speed does the projectile leave the barrel of the cannon? (b) At what point does the ball have maximum speed? (c) What is this maximum speed? When the ball is 5.30 grams. The spring is originally compressed by 5.00 cm and has a force constant of 8.00 N/m. When the ball is fired and moves 15.0cm through the horizontal barrel of the cannon and the barrel exerts a constant friction force of 0.0320N on the ball. (Choose the three best answers, one for each sub question)arrow_forwardA toy cannon uses a spring to project a 5.33-g soft rubber ball. The spring is originally compressed by 4.99 cm and has a force constant of 8.08 N/m. When the cannon is fired, the ball moves 15.3 cm through the horizontal barrel of the cannon, and the barrel exerts a constant friction force of 0.031 O N on the ball. (a) With what speed does the projectile leave the barrel of the cannon? m/s () At what point does the ball have maximum speed? cm (from its original position) (c) What is this maximum speed? m/sarrow_forward
- You place the spring vertically with one end on the floor. You then lay a 1.60 kg book on top of the spring and release the book from rest. Find the maximum distance the spring will be compressed.arrow_forwardA 3.00 kgkg block on a horizontal floor is attached to a horizontal spring that is initially compressed 0.0360 mm. The spring has force constant 845 N/mN/m. The coefficient of kinetic friction between the floor and the block is 0.420. The block and spring are released from rest and the block slides along the floor. What is the speed of the block when it has moved a distance of 0.0170 mm from its initial position? (At this point the spring is compressed 0.0190 mm.) Express your answer with the appropriate units.arrow_forwardA toy cannon uses a spring to project a 5.32-g soft rubber ball. The spring is originally compressed by 5.05 cm and has a force constant of 7.95 N/m. When the cannon is fired the ball moves 14.3 cm through the horizontal barrel of the cannon, and the barrel exerts a constant friction force of 0.031 0 N on the ball. (a) With what speed does the projectile leave the barrel of the cannon? 1.41 m/s (b) At what point does the ball have maximum speed? cm (from its original position) (c) What is this maximum speed? m/sarrow_forward
- A 5 kg block is placed near the top of a frictionless ramp, which makes an angle of 30o degrees to the horizontal. A distance d = 1.3 m away from the block is an unstretched spring with k = 3 × 103 N/m. The block slides down the ramp and compresses the spring. Find the maximum compression of the spring.arrow_forwardA toy gun uses a spring to project a 5.9 g soft rubber sphere horizontally. The spring constant is 8.0 N/m, the barrel of the gun is 14 cm long, and a constant frictional force of 0.026 N exists between barrel and projectile. With what speed does the projectile leave the barrel if the spring was compressed 5.4 cm for this launch? (Assume the projectile is in contact with the barrel for the full 14 cm)arrow_forwardYou attach a 2.10 kg weight to a horizontal spring that is fixed at one end. You pull the weight until the spring is stretched by 0.300 m and release it from rest. Assume the weight slides on a horizontal surface with negligible friction. The weight reaches a speed of zero again 0.100 s after release (for the first time after release). What is the maximum speed of the weight (in m/s)? m/s Need Help? Read It Submit Answerarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON