College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A spring that has a force constant of 1050 N/m is mounted vertically on the ground. A block of mass 1.00 kg is dropped from rest from height of 1.65 m above the free end of the spring. By what distance does the spring compress?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 1 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- m A shown in the picture, a 238 g mass slides down a curved incline then collides with a spring. The spring constant of the spring is 106 N/m. Assume that friction is negligble in these problems. (A) If the mass starts from rest at a height of 1.97 cm, what is the final compression of the spring when the mass comes to rest? Assume the spring is initially uncompressed. 2.95 cm (B) If the mass initially compresses the spring 1.14 cm, what is the maximum height the mass rises to on the incline? Assume the mass is released from rest. (C) If the mass is released from rest at a height of 1.97 cm, what is the compression of the spring when the mass has a speed of 45.4 cm/s?arrow_forwardA factory worker drops a 10 kg steel block from rest (m=10). The block then falls 30 cm onto a vertical spring standing on the floor. The spring constant of the spring is 400 N/m (k=400). The block makes contact with the spring, it then continues to move downward, compressing the spring until it comes to rest. (The spring then decompresses, firing the block upward.) Determine the distance that the spring was compressed by the block.arrow_forwardA vertical ideal spring, spring constant k, is compressed a distance A. A mass m is placed on top of the spring and then released. a) How high will the mass go? Н y=0 y=0 Answer: b) If instead the force exerted by the spring is given by F= -(ky+b), how high will the mass go?arrow_forward
- Question in pic.arrow_forwardA 2.00 kg mass on a frictionless incline plane of angle 6 degrees is released and begins sliding down the incline. At the bottom of the incline is a spring (k=70 N/m). If the mass slides 0.30 m along the incline plane before it contacts the spring, how far is the spring compressed by the mass? (round to the nearest hundredth)arrow_forwardPhysics Problem: A 2.5-kg block moving at 2. 0 m/s collides with a spring whose spring constant is390 N/m, as shown in the figure. The block compresses the spring a distance of 7.5 cm from itsequilibrium position and comes to a stop. What was the initial height of the block?(a) if the ramp exerts no friction force on the block.(b) if the coefficient of kinetic friction between the block and the horizontal surface is 0.25arrow_forward
- A 70 kg stunt- woman falls off a bridge and travels 29.0 before colliding with a pile of mattresses. The mattresses are compressed 1.00 m before she is brought to rest. Calculate the magnitude of the average force exerted by the mattresses on the stunt-woman.arrow_forwardA spring with a force constant of 12 N/m rests horizontally on a table and projects balls with a mass of 8.3 × 10-3 kg towards targets placed on the ground 93 cm below. If the spring is compressed by 4.0 cm, how far does the ball travel horizontally before it hits the ground?arrow_forwardAn object of mass 0.5 kg is propelled up an incline of angle 17 degrees by a spring with a constant of 11.4 N/m. The horizontal surface is frictionless. The coefficient of kinetic friction between the block and the incline is 0.12. If the spring is compressed by 0.6 m, how high (h shown on the figure) will the object go? Answer in m with two decimals. k, x IM 1-?arrow_forward
- An object of mass 6.25 kg slides down a hill of height 21.1 m. At the bottom of the hill is a spring with spring constant 53.6 N/m. How far is the spring compressed when the mass comes to rest? Assume the mass starts from rest at the top of the hill. Give your answer in meters to three significant figures.arrow_forwardA block of mass 1.6 kg is held against a horizontal spring so that the spring is compressed 17 cm. The block is released and it slides across the floor a distance of 3.4 m before it stops. The coefficient of friction between the block and floor is 0.185. Find the force constant of the spring.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON