College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
When a certain crystal is illuminated with an X-ray source of unknown wavelength, a first-order X-ray diffraction maximum is observed at an angle of 27.1∘∘. (All angles are measured relative to the Bragg plane.) When illuminated with a different source with a known wavelength 0.126 nm, a second-order maximum is detected at 32∘∘.
Part A) What is the distance, in nanometers, between the Bragg planes?
Part B ) What is the wavelength, in nanometers, of the first, source?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 3 steps with 3 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- You measure the distance between the finges of a diffraction pattern as follows: Distance (mm): 3.01, 3.27, 3.28 You measure the distance eight additional times to obtain the following ten values: Distance (mm): 3.01, 3.27, 3.28, 3.31, 3.16, 3.17, 3.15, 3.25, 3.18, 1.46 What values for the distance and uncertainty would you report using the first three measurements and the entire set of ten measurements? Group of answer choices First three: (3.22 ± 0.03) mm, All ten: (3.22 ± 0.02) mm First three: (3.19 ± 0.09) mm, All ten: (3.0 ± 0.2) mm First three: (3.186667 ± 0.07216237) mm, All ten: (3.201000 ± 0.02613236) mm First three: (3.216667 ± 0.02880329) mm, All ten: (3.216000 ± 0.02379916) mm First three: (3.240000 ± 0.04082483) mm, All ten: (3.217000 ± 0.02702036) mm First three: (3.24 ± 0.04) mm, All ten: (3.22 ± 0.03) mmarrow_forwardA diffraction grating of diameter 1cm and 400 lines/mm is illuminated by white light at normal incidence. The diffracted light from second order is then focused by a camera lens of focal length f onto an electronic image detector, with the lens and detector aligned to the diffracted light at λ = 550 nm. - If the detector width is 2 cm, calculate the maximum value of f so that the whole wavelength region 400 nm to 700 nm is observed on the detector. Also, calculate the maximum detector pixel size in order that two wavelengths near 550 nm and separated by the minimum resolvable λ are separated by at least 2 pixels on the detector.arrow_forward** 38. Two plastic plates (index of refraction n = 1.3) are separated by an air gap of 0.9 µm. Analyze the reflections of light of wavelength 600 nm and conclude whether it will be brightly reflected or not. 0.9 um gap ** 39. The air gap in the previous problem is now filled with a mineral oil whose index of refraction is n = 1.5. Analyze the reflections of light of wavelength 600 nm and conclude if it will be brightly reflected or not.arrow_forward
- Light waves, for which the electric field is given by Ey(x,t) =Emaxin|(2x107m-1)x-wt], pass through a slit and produce the first dark bands at ‡30• from the center of the diffraction pattern. What is the frequency of this light? How wide is the slit? At which positive angle will the next dark band occur?arrow_forwardYou measure three segments of the distance between a diffraction slit an the screen on which the pattern forms: x1 = (15.8 ± 0.2) cm, x2 = (6.7 ± 0.1) cm, and x3 = (11.3 ± 0.1). What is the uncertainty of the total distance x1 + x2 + x3? Group of answer choices 0.4 cm 0.5 cm 0.2 cm 0.3 cm 0.1 cmarrow_forwardHi, can I please get some help with this question? Thank you!arrow_forward
- Information is stored on an audio compact disc, CD-ROM, or DVD disc in a series of pits on the disc. These pits are scanned by a laser beam. An important limitation on the amount of information that can be stored on such a disc is the width of the laser beam. Explain why this should be, and explain how using a shorter-wavelength laser allows more information to be stored on a disc of the same size. With which color of light can the Hubble Space Telescope see finer detail in a distant astronomical object: red, blue, or ultraviolet? Explain your answer.arrow_forwardA physicist is calibrating a spectrometer that uses a diffraction grating to separate light in order of increasing wavelength (?A,?B, and ?C). He observes three distinct first-order spectral lines at the following respective angles ?m (where m denotes order). ?1 = 12.8°, ?1 = 14.2°, ?1 = 15.0° (a)If the grating has 3,760 grooves per centimeter, what wavelength (in nm) describes each of these spectral lines? at ?1 = 12.8° ?A= nm ?1 = 14.2° ?B= nm ?1 = 15.0° ?C=. nm (b) At what angle (in degrees) would each of these lines be found in the second-order spectrum? for ?A ?2= ° for ?B ?2= ° for ?C ?2= °arrow_forwardLight with wavelength 2 passes through a narrow slit of width w and is seen on a screen which is located at a distance D in front of the slit. The first minimum of the diffraction pattern is at distance d from the middle of the central maximum. Calculate the wavelength of light if D=2.4 m, d =1 mm and w = VAD.Give your answer in nanometers. Answer: Choose...arrow_forward
- true or falsearrow_forwarda) At what angle is the first minimum for 550-nm light falling on a single slit of width 1.00 um? When i solve the question, there is no way i get the answer to be 33.4 deg. rather i get the sin-1 (0.55) = 0.58. IS the final answer wrong in the bartley and the test book or am i wrong?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON