College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Topic Video
Question
When a 4 kg mass is attached to a spring whose constant is 196 N/m, it comes to rest in the equilibrium position. Starting at t = 0, a force equal to f (t) = 12e−5t cos 7t is applied to the system. In the absence of damping, |
(a) | find the position of the mass when t = π. |
(b) | what is the amplitude of vibrations after a very long time? |
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 3 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 2.0 kg mass attached to a 24.0 N/m massless spring is driven by an external force F=F0 cos ((2)(pi)(t)) where F0= 12.0 N. Assuming that the damping coefficient b nis so small that it can be neglected, find a) the period of the oscillator, and b) the amplitude of its motion.arrow_forwardA 1-kg mass is attached to a spring with stiffness 100 N/m. The damping constant for the system is 0.2 N-sec/m. If the mass is pushed rightward from the equilibrium position with a velocity of 1 m/sec, when will it attain its maximum displacement to the right?arrow_forwardFor a damped simple harmonic oscillator, the block has a mass of 2.1 kg and the spring constant is 12 N/m. The damping force is given by -b(dx/dt), where b= 180 g/s. The block is pulled down 15.8 cm and released. (a) Calculate the time required for the amplitude of the resulting oscillations to fall to 1/9 of its initial value. (b) How many oscillations are made by the block in this time? | Rigid support Springiness, k Mass m - Vane Damping, b Units (a) Number Units i (b) Numberarrow_forward
- A mass of 2 kg on a spring with k = 6 N/m and a damping constant c= 4 Ns/m. Suppose Fo = v2 N. Using forcing function Fo cos(wt), find the w that causes practical resonance and find the amplitude.arrow_forwardAn object stretches a spring 6 centimeters in equilibrium. Find its displacement for t>0 if it is initially displaced 3 centimeters above equilibrium and given a downward velocity of 6 centimeters/sec. Assume that there’s no damping.arrow_forwardA particle of mass 3.00 kg is attached to a spring with a force constant of 300 N/m. It is oscillating on a frictionless, horizontal surface with an amplitude of 1.00 m. A 9.00-kg object is dropped vertically on top of the 3.00-kg object as it passes through its equilibrium point. The two objects stick together. (a) What is the new amplitude of the vibrating system after the collision? m (b) By what factor has the period of the system changed? (c) By how much does the energy of the system change as a result of the collision? (d) Account for the change in energy.arrow_forward
- A 0.110 kg body undergoes simple harmonic motion of amplitude 7.19 cm and period 0.500 s. (a) What is the magnitude of the maximum force acting on it? (b) If the oscillations are produced by a spring, what is the spring constant?arrow_forwardA system with 100g_mass and a spring constant of k=150N/m has a damping constant y=1.1. ASsume the mass was pulled to the right 30 cm at t=0and released. a)Estimate the time at which the amplitude has decayed to ¼ of its initial value. b)Assume the system is connected to a forcing function given by(in Newtons)F(t)=3coswtEstimate the value of the amplitude at resonance.arrow_forwardA 2-kg mass is attached to a spring with stiffness 56 N/m. The damping constant for the system is 8√√7 N-sec/m. If the mass is pulled 10 cm to the right of equilibrium and given an initial rightward velocity of 4 m/sec, what is the maximum displacement from equilibrium that it will attain?arrow_forward
- particle with mass 2.57 kg2.57 kg oscillates horizontally at the end of a horizontal spring. A student measures an amplitude of 0.855 m0.855 m and a duration of 129 s129 s for 7272 cycles of oscillation. Find the frequency, ?,f, the speed at the equilibrium position, ?max,vmax, the spring constant, ?,k, the potential energy at an endpoint, ?max,Umax, the potential energy when the particle is located 60.5%60.5% of the amplitude away from the equiliibrium position, ?,U, and the kinetic energy, ?,K, and the speed, ?,v, at the same position.arrow_forwardA 3-kg mass is attached to a spring with stiffness 60 N/m. The damping constant for the system is 12√5 N-sec/m. If the mass is pulled 20 cm to the right of equilibrium and given an initial rightward velocity of 4 m/sec, what is the maximum displacement from equilibrium that it will attain?arrow_forwardA 63.0 kg bungee jumper jumps off a bridge and undergoes damped simple harmonic motion. If the amplitude of oscillation reduces to 0.3679 of the initial amplitude in 0.773 s, what is the damping coefficient?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON