College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
What is the approximate escape speed in m/s from a tiny moon in orbit about Mars that has a mass of 0.97 x 1016 kg and a radius of 10.0 km. The gravitational constant is 6.67 x 10-11m3kg-1s-2
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A satellite is traveling around a planet in a circular orbit with radius R. It moves in a constant speed of v = 1.1 × 104 m/s. The mass of the planet is M = 6.04 × 1024 kg. The mass of the satellite is m = 1.2 × 103 kg. First, find an expression for the gravitational potential energy PE in terms of G, M, m, and R. a)Calculate the value of PE in joules. b)Enter an expression for the total energy E of the satellite in terms of m and v. c)Calculate the value of the total energy E in joules.arrow_forwardGravitational force is F = Gm1m2/r². Set G = 1 and m1 = 1, where m2 will be a planet with 1800 times Earth's mass (so m2 = 1800) and 30 times Earth's radius (so r = 30). What will F be?arrow_forwardThe International Space Station, which has a mass of 4.94×105 kg, orbits 258 miles above the Earth's surface, and completes one orbit every 94.3 minutes. What is the kinetic energy of the International Space Station in units of GJ (109 Joules)? (Note: don't forget to take into account the radius of the Earth!) Enter answer here GJarrow_forward
- An earth-like planet with a mass of 8.00×1024 kg has a space station of mass 4.70×104 kg orbiting it at a distance of 3.00×105 km. What is the gravitational potential energy between the space station and the planet? (We can simplify the Gravitational Constant G to 6.7x10-11 Nm2/kg) Jarrow_forwardYou encounter a strange cosmic string in outer space. The string extends along the x axis from x = 0 m to x = 4.6 x 104 m. You are located at x = -5.4 x 104 m. You experience a gravitational field equal to 9.6 x 10-6 N/kg at this location. Assuming the string has a constant linear mass density, calculate this linear mass density, in units of 105kg/m. Use G = 6.7 x 10-11 N m2/ kg2. (Please answer to the fourth decimal place - i.e 14.3225)arrow_forwardPart A Comets travel around the sun in elliptical orbits with large eccentricities. If a comet has speed 2.1×104 m/s when at a distance of 2.6x1011 m from the center of the sun, what is its speed when at a distance of 4.0×1010 m. Express your answer in meters per second. Πνα ΑΣΦ m/sarrow_forward
- Venus is known as the 'Earth's sister' because of its similar size and gravity. It has a mass of 4.87 x 10^24 kg and an average radius of 6060 km. As the 150 kg satellite slowly approaches the surface of Venus it is influenced by its gravitational field. (a) Describe how the satellite gravitational potential energy changes as it is moving from an altitude of 5000 km to the surface of Venus. (b) Calculate the gravitational fieid strength on the surface of Venus.arrow_forwardAn earth-like planet with a mass of 6.00×1024 kg has a space station of mass 4.60×104 kg orbiting it at a distance of 5.00×105 km. What is the gravitational potential energy between the space station and the planet? (We can simplify the Gravitational Constant G to 6.7x10-11 Nm2/kg) (calculate in J)arrow_forwardHow much energy is required to lift a 10 kg rock from the surface of the Earth and place it in a circular orbit just 10 km above sea level? Assume Earth's radius is about 6371 km.arrow_forward
- An extrasolar planet has mass 1.27E+25 kg and radius 67400000_m. What is the escape speed for this planet? 11440_m/s 12230_m/s 5014_m/s А. D. 16190_m/s В. Е. 1973_m/s С. F. 9206 m/sarrow_forwardWhen a falling meteor is at a distance 3.58times the radius of the Earth above theEarth’s surface, what is its free-fall acceleration? The acceleration of gravity is9.8 m/s squared. , the universal gravitational constant is 6.67259×10−11 N · m2/kg2 and the Earth’sradius is 6.37 × 106 m. Answer in units of m/s 2.arrow_forwardA rover has a mass of 285.9 kg when weighed on Earth. What is the rover's mass if weighed on a planet with a gravitational constant of 6.4 m/s²? Answer: Okgarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON