College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Two objects, both with a mass of 1.96 kg are sliding across a horizontal, frictionless surface toward each other. If mass 1 has an initial velocity of 3.94 m/s i and mass 2 has an initial velocity of -2.4 m/s i, what is the change in total kinetic energy if they undergo a perfectly inelastic collision? Assume that total momentum is conserved.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 5 steps with 4 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two shuffleboard disks of equal mass, one orange and the other green, are involved in a perfectly elastic glancing collision. The green disk is initially at rest and is struck by the orange disk moving initially to the right at voi = 3.00 m/s as in Figure a, shown below. After the collision, the orange disk moves in a direction that makes an angle of 0 = 35.0° with the horizontal axis while the green disk makes an angle of o 55.0° with this axis as in Figure b. Determine the speed of each disk after the collision. Vof = m/s Vaf = m/s After the collision Before the collision Need Help? Watch It Read Itarrow_forwardA ball falls from height of 20.0 m, hits the floor, and rebounds vertically upward to height of 15.0 m. Assume that m ball = 0.385 kg. (a) What is the impulse (in kg. m/s) delivered to the ball by the floor? magnitude x direction 979.1 Assume the only impulse delivered to the ball is from the floor, which equals the change in momentum of the ball. Find the initial and final speeds of the ball using conservation of mechanical energy, and calculate Ap noting that all the motion is in the y-direction. kg. m/s up ✓✓ (b) If the ball is in contact with the floor for 0.0300 seconds, what is the average force (in N) the floor exerts on the ball? magnitude 19.223 x Use the impulse-momentum theorem and the result from part (a) to find the force, given that the contact time interval is 0.0300 s. N up direction ✓✓arrow_forwardOne object is at rest, and another is moving. The two collide in a one-dimensional, completely inelastic collision. In other words, they stick together after the collision and move off with a common velocity. Momentum is conserved. The speed of the object that is moving initially is 29 m/s. The masses of the two objects are 2.8 and 8.8 kg. Determine the final speed of the two-object system after the collision for the case (a) when the large-mass object is the one moving initially and the case (b) when the small-mass object is the one moving initially.arrow_forward
- A billiard player sends the cue ball toward a group of three balls that are initially at rest and in contact with one another. After the cue ball strikes the group, the four balls scatter, each traveling in a different direction with different speeds as shown in the figure below. If each ball has the same mass, 0.16 kg, determine the total momentum of the system consisting of the four balls immediately after the collision. (Assume v1 = 0.33 m/s, ?1 = 70°, v2 = 0.49 m/s, ?2 = 30°, v3 = 0.23 m/s, v4 = 0.48 m/s.)arrow_forwardOn a frictionless air track where motion is constricted to a line, a 2.0-kg glider moving in the positive x-direction at 4 m/s collides elastically with a 3.0-kg glider moving in the negative x-direction at 6 m/s. What are the velocities of both masses after the collision?arrow_forwardTwo objects, both with a mass of 1.91 kg are sliding across a horizontal, frictionless surface toward each other. If mass 1 has an initial velocity of 3.5 m/s i and mass 2 has an initial velocity of -2.46 m/s i, what is the change in total kinetic energy if they undergo a perfectly inelastic collision? Assume that total momentum is conserved.arrow_forward
- Two boxes make a perfectly elastic collision on a horizontal frictionless surface as shown in the figure. Box with mass m= 8.0 kg and speed of 4.50 m/s collides with box M. After the collision, box m recoils with a speed of 0.75 m/s. The boxes are in contact for 0.30 s. The magnitude of the average force on the 8.0 kg box, while the two blocks are in contact, isarrow_forwardTwo shuffleboard disks of equal mass, one orange and the other green, are involved in a perfectly elastic glancing collision. The green disk is initially at rest and is struck by the orange disk moving initially to the right at vOi = 6.55 m/s as in Figure a, shown below. After the collision, the orange disk moves in a direction that makes an angle of θ = 38.0° with the horizontal axis while the green disk makes an angle of ϕ = 52.0° with this axis as in Figure b. Determine the speed of each disk after the collision. vof = m/svgf = m/sarrow_forwardA 9.7-g bullet is fired into a stationary block of wood having mass m = 5.02 kg. The bullet imbeds into the block. The speed of the bullet-plus-wood combination immediately after the collision is 0.603 m/s. What was the original speed of the bullet? (Express your answer with four significant figures.)arrow_forward
- Two identical pucks collide on an air hockey table. One puck starts at rest. The incoming puck has a speed of 6.00 m/s and scatters to an angle of 30.0º. Use the fact that Θ1 – Θ2 = 90º for elastic collisions of objects that have identical masses — in other words, the pucks move apart at a right angle. (a) Sketch the collision, with angles labeled. (b) What is the velocity (magnitude and direction) of the second puck after it is struck?arrow_forwardSkater A, with a mass of 72.0 kg, is moving at 11.0 m/s [S] when he collides with skater B, with a mass of 42.0 kg, moving at 14.0 m/s [E]. The collision is completely inelastic and the two skaters move off together after the collision. Find the velocity of the skaters, right after the collision. Can you please explain why in the calculation vAy = - 11.0 m/s. Thank you.arrow_forwardObject 1 with a mass of 4.70 kg, moving right at a speed of 7.80 m/s along a frictionless surface, collides head-on with Object 2 with a mass of 3.30 kg moving left at a speed of 10.6 m/s. After the collision, the Object 1 is moving left at 2.40 m/s. 10. What is true about the total momentum before and after the collision? O Equal in magnitude but opposite in direction O Different in magnitude and direction O Equal in magnitude and direction O Different in magnitude but in the same directionarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON